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AIRS Team Level 2 Algorithm Theoretical Basis Document

1 INTRODUCTION

The Atmospheric Infrared Sounder (AIRS) is a facility instrument selected by
NASA to fly on the second Earth Observing System polar orbiting platform, EOS-PM 1.
The same platform will also carry the NOAA operational Advanced Microwave Sounding
Unit, AMSU-A, and the Microwave Humidity Sounder of Brazil (HSB). AIRS is
designed to meet the requirements of the NASA Earth science research programs and the
NOAA operational plans.

The AIRS/AMSU system will provide both new and improved measurements of
clouds, atmosphere, and land and oceans, with the accuracy, resolution and coverage
required by future weather and climate models. Such data will be used to vaidate climate
models, study geophysical processes, and monitor trends. The purpose of this document
isto give an overview of the important climate data sets that AIRS/AMSU will produce:

» amospheric temperature profiles with an average layer accuracy of 1K in 1 km
thick layersin the troposphere and 1K in 4 km layersin the stratosphere

» seasurface temperature
» land surface temperature and infrared spectral surface emissivity
» humidity profilesand total precipitable water vapor

» fractiona cloud cover, cloud spectral infrared emissivity, and cloud-top pressure
and temperature

» total ozone column density and column density in three layers of ozone of the
atmosphere

In this document we present the theoretical basis of the AIRS Core Algorithm.
Many products are presented in one document because of the basic structure and approach
of the Core Algorithm. In order to achieve the basic requirement of temperature profile
accuracy of 1K in 1 km thick tropospheric layers, a multi-spectral simultaneous retrieval of
the atmospheric thermodynamic state is attempted. Hence the Core Products refer to the
basi c thermodynamic variables that control the outgoing infrared radiance.

Furthermore, we consider this document as a snapshot of current status of the
AIRS software development effort. We fully expect that many refinements will be made
to the algorithms and to the simulation data we use to test the algorithms. The refinements
will reflect added algorithm robustness and parameter retrieval improvements.

Ver 1.7 1 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

2. OVERVIEW AND BACKGROUND INFORMATION

2.1 Experimental objectives

The Earth's climate is a complex system with many components and feedback
processes that operate on different time scales. The slow components involve the deep
oceans, and permanent and semi-permanent ice and snow covers. Their response sets the
pace for long-term climate trends and may introduce a delay of 50 years or more in the
response of the climate system to externa forcing. The fast components, whose scales
range from hours to multiple seasons, encompass the atmosphere, upper ocean layers, and
include the biosphere aswell as air-land and air-sea interactions. The fast components are
coupled and are controlled by the atmosphere, which drives the whole Earth environment
and determines the amplitude and geographical patterns of climate change. The
atmosphere controls many feedback processes that involve the interaction of radiation with
clouds, water vapor, precipitation and temperature. Thus, aknowledge of the properties of
the atmosphere is important not only for understanding processes that occur within the
atmosphere itself; but also for understanding the feedback mechanisms among the various
components of the entire climate system. Atmospheric and surface measurements from
AIRSwill provide data about these interactions with unprecedented accuracy.

The ability of AIRS/AMSU to provide simultaneous observations of the Earth's
atmospheric temperature, ocean surface temperature, and land surface temperature, as well
as humidity, clouds, albedo, and the distribution of greenhouse gases, makes AIRS the
primary EOS instrument for investigating severa interdisciplinary issues to be addressed
in Earth science. Among these issues are:

» Improving numerical weather prediction.

» Demonstrating seasona to interannual predictions of the effects of EI-Nino and
other transient climate anomalies.

» Characterizing the optical properties of atmospheric constituents, cloud and
aerosols, in order to compute radiation fluxes.

» Monitoring variations and trends in the global energy and water cycles.

2.2 Historical perspective

Thebasic physics involved inthe design of atemperature sounder from earth
orbit was published in the late 1950's (Kaplan 1959). Ten years later, and shortly after
Chahine (1968) published the relaxation algorithm to invert spectra radiances to
obtain temperature profiles, the first experimental temperature soundings from space
were achieved using the Satellite Infrared Radiation Spectrometer (SIRS), a seven
channel grating spectrometer on NIMBUS-4 with a spectral resolution (A/ax) of 100 in
the 15 um CO, band (Wark and Hilleary 1969). The presence of cloudsin the field-of-
view posed a mgjor chalenge. Smith (1968) published a monograph on this topic and
proposed a numerical technique, the N* parameter, for "cloud-clearing". Clouds
become optically thick much quicker in the infrared (15 um = 0.0015 cm) than a 57
GHz (0.5 cm) microwave sounding frequencies. Staelin et al. (1975a) demonstrated the
capability to sense atmospheric temperature within and below clouds in the microwave
with the Nimbus-E Microwave Sounder (NEMS). Unfortunately, the mid to lower
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tropospheric vertical resolution achievable in the microwave is inferior to that achievable
inthe 4.3 um CO, band (see Table 2.1). A physical basis for "cloud-clearing" infrared
radiances was proposed by Chahine (1974). Smith et al. (1978) demonstrated the N*
technique using the ITPR on the NIMBUS-5 satellite. Aumann and Chahine (1976)
and Chahine et al. (1977) demonstrated temperature sounding of partly cloudy
atmospheres using 4.3 ym CO, and 11 ym window channels. A cloud-clearing
technique, which combines the use of infrared and microwave data, is now routinely
applied in the NOAA operational sounding system as well as at NASA Goddard Space
Flight Center (Susskind et al. 1984). This method takes advantage of the fact that, to
first order, the microwave dataare not affected by most types of clouds and makes the
assumption that the horizontal inhomogeneity in the scene due to clouds is much
larger than the inhomogeneity due to temperature profile changes on a scale of a
microwave field-of-view. By 1978 the HIRS-2 sounder (Smith, et al., 1979), a
radiometer with 19 channels between 3.7 ym and 15 pm and a spatial resolution of about
75 kilometers, plusthe Microwave Sounding Unit, MSU (afollow-up to NEMS), with
4 channelsnear the 57 GHz oxygen band, became the first of the TIROS Operational
Verticad Sounders (TOVS). This system is the current operational NOAA sounding
system. The NOAA Polar Orbiting Sounding System will soon be upgraded with the
HIRS3, AMSU-A and AMSU-B, to be launched on NOAA-K in 1997.

2.3 Instrument characteristics

AIRS is a continuoudly operating cross-track scanning sounder, consisting of a
telescope that feeds an echelle spectrometer. The spectrometer analyzes thermal infrared
radiation between the wavenumbers of 650 cm™ - 2700 cm™, with an average resolving
power of 1200. This spectra region includes the important temperature sounding regions
inthe 4.2 and 15um CO, bands, water vapor sounding in the 6.3 um water band and ozone
sounding in the 9.6 um region. AIRS has about 2400 detector elements at the focal plane,
arranged in several linear arrays. Each detector has a noise-equivalent difference
temperature on the order of 0.2K (at 250K) seenin each 1.1° Instantaneous Field Of View
(IFOV) -- see Figure 2.1.

During each scan, the rotating external mirror scans the underlying Earth from 49°
on one side of the nadir to 49° on the other side, in 90 integration periods, and provides
two views of dark space, one view of an internal radiometric calibration target, and one
view of an internal spectral calibration target. Thus each scan produces 94 sets of
measurements (90 Earth scenes and 4 calibrations). The scan is repeated every 8/3
seconds. The downlink data rate from the AIRS instrument is 1.2 Mbit/sec.

Proper interpretation of AIRS data requires the use of co-located temperature and
humidity data from a passive microwave sounder. Therefore, the Advanced Microwave
Sounding Unit (AMSU) instrument will fly as part of the AIRS instrument complement
on EOS. This instrument (which will fly on the NOAA-K, -L, -M, and -N weather
satellites) is composed of two subsystems, AMSU-A and the Humidity Sounder of Brazil
(HSB) (formerly the Microwave Humidity Sounder, MHS).

AMSU-A is a crosstrack scanning multispectral microwave radiometer, with a
3.3° IFQOV and 15 spectral channels (23 GHz - 90 GHz). Each cross-track scan produces
32 sets of measurements (30 Earth looks, 1 dark space cdlibration, and 1 interna
blackbody radiometric calibration). The scan repeats every 8 seconds, being synchronized
with every 3 AIRS scans (via the spacecraft master clock).
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HSB is a cross-track scanning multispectra microwave radiometer, with a 1.1°
IFOV and 4 spectral channels (150 GHz - 183 GHz). One channel was diminated from
those of AMSU-B by our Brazilian partners as a cost saving measure. Each cross-track
scan produces 92 sets of measurements (90 Earth looks, 1 dark space calibration, and 1
blackbody calibration). The scan repeats every 8/3 seconds, being synchronized every third
scan line.

The overlap between AIRS and AMSU-A footprints in the cross-track direction is
illustrated in Figure 2-1. Note that HSB and AIRS will share approximately the same
footprints. The current retrieval system produces one set of core products per AMSU-A
footprint.

Ficure 2.1 AIRSAMSU SCHEMATIC FOOTPRINT PATTERN

24 Measurement Strategy

During the past 20 years, considerable progress has been made in passive infrared remote
sensing of temperature profiles. Currently, the combination of the High Resolution Infrared
Sounder (HIRS) and the Microwave Sounding Unit (MSU) provides atmospheric
temperature profiles with an average RMS error of approximately 2.0 K, with a vertica
resolution of 3 to 5 km in the troposphere. This accuracy, however, fals short of the
requirements for numerical weather prediction models. At present the need for improved
sounding is accentuated by the fact that, during the past decade, models have evolved more
rapidly than the capabilities of satellite-borne temperature sounders to supply accurate data.
Theinability of current sounders to match the vertica and horizontal resolution of genera
circulation models and difficulties in correcting for the effects of clouds are the maor
deficiencies to be improved upon.

The limitation in vertical resolution is caused mainly by the broadness of the
contribution functions (i.e., the weighting function multiplied by the Planck function - see
Figure 2.2) of current instruments. When the contribution functions are broad, emitted
energy reaching the satellite in each channed will have components originating from a thick
layer of the atmosphere, thereby making the discrimination of fine-scale verticad detalls
practically impossible. This problem is compounded by the limited number of HIRS
channels. Furthermore, because of the broadness of the contribution functions (see Table
2.1) and difficulties in eiminating cloud contamination effects, as well as surface
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emissivity, O3, H20, and other minor constituents, the RMS errors in the retrieved

temperature profiles remain high. AIRS takes advantage of the temperature dependence in
the high-Jlinesin the 4.18 um CO, band to sharpen the weighting functions.

Band M AN Half-width in Remarks
scale heights
o | 145pm 100 2.4 VTPR/HIRS
% 150pum 1200 16 AIRS
% 15.0 pm 10000 1.4 Wings of lines
E | 60GHz 1000 1.3 AMSU
o| 150um 100 1.6 VTPR
% 60 GHz 1000 1.5 AMSU
é 446pm 100 1.3 HIRS
5 418 um 1200 0.69 AIRS
418 um 10000 0.60 Wings of lines

TABLE 2.1 CONTRIBUTION FUNCTION HALF WIDTH ASA FUNCTION OF SPECTRAL RESOLUTION

In p

ot
dlnp

FIGURE 2.2 SCHEMATICILLUSTRATION OF A CONTRIBUTION FUNCTION ASA FUNCTION OF ATMOSPHERIC
PRESSURE WHERE B ISTHE PLANCK FUNCTION,, T ISTHE TRANSMISSION TO SPACE, AND P IS THE PRESSURE

Experience with the current generation of sounders has shown that amalgamation
of microwave and infrared data is a very useful combination for accurate eimination of
most effects of clouds. Microwave observationsin the 50 GHz region are not affected by
most types of clouds, which allows them to be used as an accurate filter to retrieve avariety
of clear-column parameters. Some microwave channels are affected dightly by the
surface, especialy over land, and are less effective for filtering out low clouds. Visble
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channels are needed here as a diagnostic to discriminate between low-level clouds and
different types of terrain.

All AIRS/AM SU sounding channels, including the visible channels, must observe
the same field-of-view at approximately the sametime. This simultaneity requirement will
insure that al the channels observe the same clouds and, consequently, the same cloud
correction appliesto al the frequencies.

I nfrared Measurements

High spectral resolution in the infrared is key to achieving high vertical resolution.
In the troposphere, the ability of microwave channels to provide high vertica
discrimination isinherently weak. High Jlines in the R-branch of the 4.18 pum region, in
which the CO, absorption coefficient increases rapidly with increasing temperature,
provide the highest possible lower tropospheric vertical resolution of any part of the
infrared spectrum and this resolution enhancement can be captured only through high
spectral resolution measurements.  In addition, a sufficiently large number of 15 um
infrared channels are required in the upper troposphere and adjacent lower stratosphere; and
this requirement can also be satisfied as a consequence of high spectra resolution. High
gpectral resolution also permits selection of sounding channels not contaminated by water
vapor lines or by emission from other active gases, and provides spectraly clean window-
channels for surface measurements. The effect of the surface emission must be separated
from the emission of the lower troposphere to provide accurate temperature profiles near
the surface.

Theinfrared channels to be used for retrieving such parameters as temperature and
humidity profiles, ocean and land surface temperature, clouds and O3, must be selected

carefully. Thisisaided by the availability of a number of narrow band-pass channels
that are located away from unwanted absorption lines, while taking advantage of the unique
spectral properties of several regions such as the high Jinesin the R-branch of the 4.3 um
CO2 band and very clear window channels near 3.7 um. A typicd AIRS spectra is

presented in Figure 2.3 and Table 2.2 presents the precise AIRS array specifications.

290_COZ window Oz window H.O co, window

2
280 W (_,_rw‘-
270 <
260 <

250 <
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230 +

220

210
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Wavenumber, cm

FIGURE 2.3 SMULATED AIRS BRIGHTNESS TEMPERATURE SPECTRA FOR CLEAR CONDITIONS
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Beginning Ending Beginning Beginning
wavelength wavelength wavenumber wavenumber
Al A2

M1 1)
3.736 3.917 2676.37 2553.04
3.915 4110 2554.34 2433.09
4.110 4.329 2433.09 2309.95
4,327 4.609 2311.02 2169.90
6.200 6.493 1612.83 1540.03
6.550 6.850 1526.62 1459.85
6.936 1477 1441.84 1337.45
7.475 7.792 1337.88 1283.35
7.861 8.220 1272.18 1216.55
8.807 9.480 1135.42 1054.90
9.565 10.275 1045.48 973.24
10.275 10.985 973.24 910.33
11.070 11.751 903.31 850.98
11.743 12.685 851.56 788.33
12.799 13.746 781.32 727.50
13.738 14.553 727.92 687.13
14.667 15.400 681.79 649.35

TABLE 2.2 AIRS 17 DETECTOR ARRAY CUTOFF WAVELENGTHS (ASMEASURED IN A VACUUM )

Microwave Measurements

AMSU-A consists of 12 channels within the 50-60 GHz portion of the oxygen
band to provide temperature and precipitation information. In addition, AMSU-A contains
three window-channels at 24, 31 and 89 GHz to provide total precipitable water, cloud
liquid water content and precipitation measurements. These channels will also be used to
provide information on sea-ice concentration and snow cover. The 3-dB beam diameter of
AMSU-A is 3.3° corresponding to about 50x50 km at nadir. The set of 15 microwave
channelsisgivenin Table 2.3.

A second microwave instrument package will also be provided. The Microwave
Humidity Sounder of Brazil (HSB), formerly AMSU-B, contains one window-channel a
150 GHz to obtain high resolution measurements of precipitation, snow cover and sea-ice
with the same spatial footprint as AIRS. Three additional channels in the 183 GHz water
vapor line will be used to improve the accuracy of atmospheric humidity profiles and tota
precipitable water vapor. The 3-dB beam diameter of HSB is 1.1°, corresponding to about
16 km at nadir. The full set of HSB (AMSU-B) channels and their specifications is given
inTable2.4.
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Channel Center Frequency Bandwidth Function

No. (MHz)

1 23.800 GHz 270 Water Vapor Burden
2 31.400 GHz 180 Surface Temperature
3 50.30 GHz 180 Surface Temperature
4 52.800 GHz 400 Surface Temperature
5 53.596 £0.115 GHz 2x170 Tropospheric Temp
6 54.400 GHz 400 Tropospheric Temp
7 54.940 GHz 400 Tropospheric Temp
8 55.500 GHz 330 Tropospheric Temp
9 57,290.344 MHz 330 Stratospheric Temp

(=f9)

10 fg £217 MHz 2x78 Stratospheric Temp
11 fg +322.2+48 MHz 4x36 Stratospheric Temp
12 fg £322.2422 MHz 4x16 Stratospheric Temp
13 f9 £322.2+10 MHz 4x8 Stratospheric Temp
14 fg £322.2+4.5 MHz 4x3 Stratospheric Temp
15 89.0 GHz 6000 Cloud Top/Snow

TABLE 2.3 AMSU-A CHANNEL SET (3.3 DEGREE BEAM DIAMETER)

Channel Center Frequency Bandwidth Function
No. (GH2) (GHz)
1*
2 150.0 4000 Water vapor
3 183.31 £ 1.0 2x500 Water vapor
4 183.31 £3.0 2x1000 Water vapor
5 183.31+7.0 2x2000 Water vapor

TABLE 2.4 HSB (AMSU-B) CHANNEL SET (1.1 DEGREE BEAM DIAMETER)
*Channel 1 (89 GHz) has been deleted for the HSB
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Visible and Near-infrared Measurements

AIRS will aso carry a small set of visble channels as a diagnostic aid in
accounting for low-level clouds. In addition, the visible channels are needed to diagnose
land surface inhomogeneities for the determination of surface temperature and emissivities
and enhance the synergism with the Moderate Resolution Imaging Spectroradiometer
(MODIS) on EOS. A set of visible and near-infrared channels between 0.4 and 1.1 pm is
presented in Table 2.5. There are 36 spots within one AIRS infrared footprint.

Channel No. Frequency Range (um) IFOV
1 0.40-0.44 1.1°/6
2 0.58 - 0.68 1.1°/6
3 0.71-0.98 1.1°/6
4 0.40 - 1.06* 1.1°/6

* warm Si-diode cutoff
TABLE 2.5 VISIBLE CHANNEL SET
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3 The Forward Problem

In the following, atmospheric radiative transfer or the ‘forward problem’ will be
discussed. Because the retrieva methodology utilized by the AIRS team depends on the
ability to accurately determine the outgoing radiance, particular attention will be paid to
errors in the spectroscopy and errors in modeling the outgoing radiation -- the rapid
forward model. To overcome these error sources, a process known as tuning is used to
remove systematic effects and is described in section 5.1.

3.1 Radiative Transfer of the Atmosphere in the Microwave
(Rosenkranz/Staelin)

At the frequencies measured by AMSU-A and HSB, the most important absorbing
gases in the atmosphere are oxygen and water vapor. The oxygen molecule has only a
magnetic dipole moment, and its lines are intrinsically much wesaker than those which
result from the electric dipole of water vapor; however, the much greater abundance of
oxygen in the atmosphere more than compensates for this difference. When clouds are
present, liquid water also plays arole in radiative transfer. However, fair-weather cirrus
composed of ice particles small compared to the wavelength are effectively transparent to
microwave radiation.

Oxygen

The dipole moment of O, is due to two unpaired electron spins and thus it can be
expressed in terms of fundamental constants. Hence, the intensities of the O, spin-rotation
trangitions are among the most precisaly calculable of any molecule. The vaues used are
from the JPL line catalog (Poynter and Pickett, 1985). These transitions comprise
approximately 30 lines between 50 and 70 GHz and an isolated line a 118.75 GHz (which
is not observed by AMSU-A or HSB). The pressure-broadened widths of the lines in the
50-70 GHz band have been measured by severa groups. The most accurate
measurements are probably those of Liebe et al., (1977) and Liebe and Gimmestad (1978),
where the errors were estimated to be< 1% for most of the stronger lines.

The characteristic of oxygen’s microwave spectrum that introduces difficulty for
construction of models is the significant degree of line mixing. In the Millimeter-wave
Propagation Model (MPM92) (Liebe, et al., 1992), line mixing was treated by a first-order
expansion in pressure, and the coefficients of the expansion were fitted by a constrained
linear method to |aboratory measurements made on an O, - N, mixture over the frequency
range of 49-67 GHz and the temperature range 279-327 K, with a noise level of
approximately 0.06 dB/km. Within that range, the model represents the measurements to
< 0.2 dB/km (seefor example, Figure 3.1.1). It is possible, however, that extrapolation to
colder temperatures introduces larger errors. (Recent measurements from the NASA ER-
2 may answer this question.) Thereis aso some indication from aircraft and ground-based
atmospheric measurements that model errors in oxygen zenith opacity may reach 10-20%
near 30 and 90 GHz. However, the main absorber at those frequencies is water.
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FIGURE 3.1.1. ATTENUATION MEASUREMENTSOF TEST AIRAT 279K AND 7 PRESSURES, COMPARED WITH THE
MPM 92 MODEL (FROM LIEBE ET AL, 1992).

Water Vapor

Water has a weak rotationa line at 22.23 GHz that is semi-transparent a normal
atmospheric humidities, and a much stronger, opaque line at 183.31 GHz. Intensities of
these lines have been calculated and tabulated by Poynter and Pickett (1985 -- JPL line
catalog) and Rothman et al., (1992) (HITRAN), among others. For the 22-GHz line, the
JPL intensity, which is used here, islower than the HITRAN vaue by 3%. Thereis aso a
measurement by Liebe et al., (1969) (estimated error 0.3%) which is 0.5% lower than the
JPL value. At 183 GHz, the JPL lineintensity is 0.8% lower than HITRAN. Widths have
been measured by Liebe et al., (1969) and Liebe and Dillon (1969) a 22 GHz with
estimated uncertainty of 1% for both self and foreign-gas broadening; and by Bauer et al.,
(1989) at 183 GHz, with uncertainties of 0.5% for self-broadening and 1.6% for foreign-
gas broadening.

At frequencies away from these two lines, microwave absorption by water vapor is
predominantly from the continuum, which is attributed to the low-frequency wing of the
intense infrared and submillimeter rotational spectrum. In the microwave part of the
spectrum, the foreign-broadened component of the continuum is stronger than the self-
broadened component, for atmospheric mixing ratios. Measurements of continuum
absorption as a function of temperature have been made at various frequencies by Liebe
and Layton (1987) and by Bauer’s group (Godon, et al., 1992; Bauer et al., 1993, 1995).
There are a'so numerous measurements a single temperatures and frequencies in the
laboratory, and in the atmosphere where temperature and mixing ratio are variable. The
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measurements do not present a consistent picture. With respect to the foreign-broadened
component, measurements by different experimenters differ by as much as 80% after
adjustments for frequency are made. The MPM 89 H.,O continuum model (Liebe, 1989),
which is based on the Liebe and Layton (1987) measurements, is used here because it
yields the most satisfactory overall agreement with atmospheric measurements.

Liquid Water

It is useful to distinguish between precipitating and nonprecipitating clouds with
respect to their interactions with microwaves. Over the range of wavelengths measured by
AMSU-A and HSB, nonprecipitating droplets (with diameters of 50 um or less) can be
treated using the Rayleigh small-droplet approximation. In this regime, absorption is
proportiona to the liquid water content of the air, and scattering can be neglected. The
accuracy of calculationsisbasicaly determined by the water dielectric constant model. The
double-Debye model of Liebe et al., (1991) is used here; it has an estimated maximum
prediction error of 3% between 5 and 100 GHz, and 10% up to 1 THz. Precipitation, on
the other hand, requires Mie theory to calculate both absorption and scattering. The latter is
generally not negligible, and a some wavelengths is predominant. In the case of
convective storms, scattering from ice at high atitudesis often the most important process.
In simulations so far we have not considered scattering, and the rapid transmittance
algorithm uses only the small-droplet approximation for cloud liquid water.

Rapid Transmittance Algorithm

The physical retrieval algorithms used for AIRS/AMSU/HSB do radiative transfer
caculations for each profile and hence need a computationally efficient transmittance
algorithm. The microwave agorithm computes an effective channel transmittance between
two adjacent pressure levels as

(t(P.Py)) = exp [-(a +Bpy +VPL)]. (3.1.1)

where p,, is the water vapor column density of the (P,, P,) layer, p, is its liquid water
column density, and the coefficients a, B, y, ae calculated for each layer and channdl.
They implicitly depend on temperature, pressure, and the angle of observation; g aso
dependsimplicitly on p,. For AMSU channel 14, o has a weak dependence on the loca
geomagnetic field. The magnetic field is currently calculated by a fifth-order spherical-
harmonic representation that has an accuracy of afew microteslas. o includes the opacity
due to O, and a small contribution from pressure-induced absorption by N..
Parameterization of the coefficients uses approximations described by Rosenkranz (1995)
for oxygen-band or window-type channels. The oxygen-band-channel coefficients are
computed on a set of fixed pressure levels and then linearly interpolated to the pressure
levels of the present retrieval, which can be variable (asisthe case for the surface pressure).
Window-channel coefficients use analytic approximations for far-wing line and continuum
absorption. Channels near the two water lines (AMSU-A channel 1 and HSB channels 3-
5) use a Lorentzian-line calculation for the nearby line, with the contributions of other lines
treated in the same way as for a window channel. The loca water-line parameters, the
water continuum, and the liquid-water absorption are interpolated from a table as functions
of temperature.

The retrieval algorithm described in Sec. 4.1 dso makes use of the derivative
dp/dp,,, which is computed in the rapid agorithm by appropriate anaytic expressions
corresponding to the local-line and continuum components.
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The transmittance of multiple layers is caculated by taking the product of the
transmittances for each layer. This transmittance is then used in the radiative transfer
equation to compute brightness temperature:

P.

0= J’T(P) <dt(0,P) > +£T, <1(0,R,) >
0

(3.1.2)

P.

+(1-¢)<1(0,R,) >fT(P) <dt(P,,P)>+(1-¢)0, <1(0,R,) >*

where T(P) is atmospheric temperature at level P, T, and P, are the surface temperature and
pressure, ©, is the cosmic background brightness temperature (see eq. 4.1.2), and ¢ is the
emissivity of the surface, assumed to be smooth here.

The ability of the rapid algorithm to approximate a line-by-line calculation was
tested on a set of 300 profiles from the TOVS Initid Guess Retrieva (TIGR) (Chedin et
al., 1985) ensemble. Thefirst 100 profiles from each of the tropical, midlatitude, and polar
groups were used. The line-by-line calculation followed Rosenkranz (1993). Figure 3.1.2
shows brightness temperature errors (mean + 1 standard deviation) at nadir, with surface
emissivity = 0.7. For the channels that are not opagque (1-5, 15-17, 19 and 20), these
brightness temperature errors depend on surface emissivity. Thevaluee = 0.7 is typica of
ocean a the highest frequencies, and intermediate between ocean and land a the lowest
frequencies. Errors for higher-emissivity land surfaces are smaller than in Figure 3.1.2.
The errorsfor ch. 14 include the conseguences of the magnetic field approximation.
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FIGURE 3.1.2. BRIGHTNESS TEMPERATURE ERRORS (RAPID ALGORITHM MINUSLINE-BY -LINE ALGORITHM) FOR
AMSU-A CHANNELS (1-15) AND AMSU-B CHANNELS (16-20). VERTICAL LINESINDICATE* 1
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3.2 Radiative Transfer of the Atmospherein the Infrared (Strow)

Physical retrievals of atmospheric parameters from infrared spectra require accurate
radiative transfer models, known as forward models, relating the atmospheric parameters
to the observed channel radiances. The forward model described in this sub-section relates
atmospheric parameters to the layer transmittances required for AIRS radiative transfer
caculations. In order to keep up with the high data rate of AIRS, such a forward model
must quickly caculate these transmittances, and thus is termed a ‘fast transmittance
model.” Furthermore, the high spectral resolution of AIRS requires highly accurate
modeling of the molecular spectroscopy of the infrared active gases, especialy spectral line
shapes. Outgoing atmospheric radiances contain emission lines at the higher altitudes with
widths as small as 0.001 cm™. Performing radiative transfer at this spectral resolution,
and then convolving the resultant radiances with the AIRS spectral response function
would be many orders of magnitude too slow for EOSDIS. For this reason, the forward
model provides transmittances suitably convolved with the AIRS spectral response
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function so radiative transfer computations need only be performed for each AIRS channel.
We have developed the Pressure layer Fast Algorithm for AtmoSpheric Transmittances
(PFAAST) for the AIRS forward model.

The PFAAST model actually produces equivalent channel averaged optica depths,
k's, which are related to the layer transmittances, 1 's, by © = exp(-k). The optical depth is
the product of the absorption coefficient and the optical path. For AIRS, afast model for k
is much more accurate than a model that directly returns layer t 's. k's are computed for
each of the 100 atmospheric layers used for AIRS radiative transfer (the layering scheme is
discussed in more detail later in this sub-section). The current PFAAST model alows
water, ozone, methane, carbon monoxide, the temperature, and local scan angle to vary.
All other gases are treated as ‘fixed gases.” Tentatively, N,O amounts may be alowed to
vary. Inaddition, some variation in CO, amounts will be required, but this may be done
‘off-line’ as a semi-continuous adjustment of the 'fixed gas' transmittances. It may also be
necessary to let some of the minor gases vary, such as the chlorofluorocarbons (CFC's).
Although the observed radiances are primarily sensitive to temperature via the Planck
function, the temperature dependence of the transmittancesis also important.

Over the years, a number of fast transmittance models have been developed for
various satellite instruments [McMillin and Fleming, 1976; Fleming and McMillin, 1977;
McMillin e al., 1979, 1995; Scott and Chedin, 1981; Susskind et al., 1983; Erye and
Woolf, 1988; Chéruy et al., 1995]. However, some of these models only have been
applied to the model microwave region where the measured radiances are essentialy
monochromatic and easier to model. PFAAST most closely follows Susskind et al.
[1983] by parameterizing the optical depths rather than transmittances. Preliminary work
has been performed with the new Optical Path TRANsmittance (OPTRAN) algorithm
developed by McMillin e al. [1979, 1995]. Both PFAAST and OPTRAN appear
adequate for AIRS with similar computational requirements [Hannon, et al., 1996].

Basic Radiative Transfer and the Polychromatic Approximation

The monochromatic radiance leaving the top of the atmosphere, excluding any
scattering and clouds, and assuming a Lambertian surface is approximated by

R(v,6) = e B[v, TJt(v,p,,0) + J’ B[V,T(p)]%’ri;e)

Inps

dinp+

Inpg,

(Letv,p,8) [ BV TE1T P2 dInp+ o H(Ton (VP BTV P, 8,r) 009 .)

I

(3.2.1)

where B[v, T(p)] is the Planck function emission for layer p a temperature T(p), t(v,p,8)
is the layer-to-space transmittance at viewing angle 6, t,(v,p,0) is the surface-to-space
transmittance, and T, €, and p, refer to the Earth's surface temperature, emissivity, and
reflectivity respectively. Also, the solar term is represented by H(v)=2.16x10° tB(v,T,.).
The polychromatic approximation replaces the monochromatic layer-to-space
transmittances with transmittances convolved with the AIRS spectra response function
(SRF). In most cases, the AIRS channd radiances calculated from the above equation
using convolved layer-to-space transmittances differ from the convolved monochromatic
AIRS channel radiancesby < 0.1 K. Thisdifferenceisgenerally less than the nominal 0.2
K RMS noise of AIRS, and thus does not introduce any serious inaccuracies. PFAAST
produces effective layer transmittances since they can be modeled more accurately and
because the AIRS retrievd agorithms perform radiative transfer using layer
transmittances. However, if polychromatic radiative transfer is performed using layer
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transmittances that have been directly convolved from the monochromatic layer
transmittances, large radiance errors will result due to the breakdown of Beer's law. For
thisreason, PFAAST uses layer transmittances derived from ratios of convolved layer-to-
space transmittances, thus preserving Beer's law to a much higher degree. Although an
exponentiation is required to produce transmittances, PFAAST provides arelatively simple
relationship between optical depths and atmospheric variables. Scattering is negligible for
long wavelength IR but will be modeled for the short wavelength AIRS channels.

Spectroscopic | nputs

The ultimate goal isto produce aforward model that does not introduce significant
errorsin AIRS computed radiances. In the past, this has not been possible given the state-
of-the-art in atmospheric spectroscopy. However, advances in laboratory measurements of
line parameters and advances in phenomenological spectral lineshape models make an
accurate AIRS forward model a red possibility. This is especialy important for water
vapor, H,O. Radiosonde humidity errors coupled with always present errors in the time
and space co-location of the radiosonde and AIRS measurements make tuning of the AIRS
H,O radiances quite suspect. Consequently, the forward model is of fundamental
importance for AIRS data products. The sensitivity of the AIRS forward model to errors
in spectroscopic line parameters and the development of improved spectral lineshape
models for CO, and H,O are summarized in the following subsections.

Spectroscopic Line Parameter Errors

Due to the dominance of either CO, or H,O absorption in the majority of AIRS
channels, the most important spectroscopy errors are associated with errors in the line
parameters and line shapes of these two gases. The line center frequencies are well known,
and thus should not be a noticeable source of error. Although there is a shift in the line
center frequency with pressure, these shifts are too small to be of concern for AIRS. The
line parameters most likely to introduce spectroscopy errors into the fast forward model for
AIRS are the line strengths, line widths, and the temperature dependence of the line widths.
However, errors in spectra lineshapes and continuum absorption probably will be more
troublesome than line parameter errors.

Currently, the HITRAN92 [Rothman et al., 1992] database is used for most
atmospheric line parameters, supplemented by more recent water linewidths measured by
Toth [private communication]. The AIRS forward model will be regularly updated with
the latest available line parameters using databases such as HITRAN96 and GEISA
[Husson et al., 1992]. Because there are so many bands and molecules that contribute to
the observed radiances, the accuracy of the existing line parameters is difficult to judge in
detail. Fortunately for AIRS, most of the important lines of both CO, and H,O have been
measured in the laboratory .

In general the CO, line parameters are better known than those for H,O. Theline
strengths for the stronger CO, lines are good to 5% or better, while the H,O line strengths
may only be good to 10%. The H,O line strengths are al'so more likely to have different
errorsfor different bands and isotopes. The effects of these potential errorsin line
strengths for CO, and H,O are shown in Figures 3.2.1 and 3.2.2, respectively. Note, these
figures assume systematic errorsin the line strengths and widths. Whileit is reasonable to
expect some level of systematic error, at least over 20-50 cm, there will also be random
components to these errors.
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Fic 3.2.1: Tor: A MEAN AIRS SPECTRUM IN A PORTION OF THE 15 um CO, BAND. BOTTOM: THE MEAN
BRIGHTNESS TEMPERATURE ERRORSDUE TOA +5% ERROR IN CO, LINE STRENGTHS, A +10% ERRORIN
CO, LINEWIDTHS, AND A +20% ERROR IN THE CO, WIDTH TEMPERATURE DEPENDENCE.

Error in B(T) in K

The estimated uncertainty in the line widths are 10% for CO, and 20% for H,O.
Again, the H,0 widths are more likely to have both larger random and systematic errors
between bands and isotopes. Line width errors will probably be the dominant source of
spectroscopy errors for water, while line strength and width errors will probably be of
approximately equal importance for CO,. The effects of these errors in line widths for
CO, and H,O are shown in Figures 3.2.1 and 3.2.2, respectively.

The temperature dependence of the line widths is the least well known, with an
uncertainty of perhaps 20% and sometimes more. However, of the four sources of errors
discussed here, it is the least important. A plot of the effects of a +20% error in the
temperature dependence of the CO, line widthsis shown in Figure 3.2.1. The similar error
for H,O is much smaller than those that are shown in Figure 3.2.2.

The uncertainty in the H,O foreign continuum may be as large as 25% in portions
of the 7 um band. For AIRS, the maximum errors due to thisfall in the 1400 cm™ region.
A plot of the impact of a +25% error in the H,O foreign continuum is shown in Figure
3.2.2. In other portions of the 7 um band these uncertainties are likely smaller.

All of the errors quoted here are somewhat conservative. Over the next severa
years, continuing laboratory spectroscopy efforts, especialy in Europe, should lower the
errors quoted here by afactor of two.
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Molecular Line Shape Effects

Errorsin the spectral lineshapes of CO, and H,O are much more problematic than
line parameter errors. Because of the large optical depths of CO, and H,O in the
atmosphere, their spectral line wings can be quite important, especialy for remote sensing
of temperature and humidity. For example, AIRS channels with the sharpest weighting
functions are located in between lines or in the line wings where knowledge of the spectral
line shape is most important. Moreover, accurate measurements of the line wing
absorption are exceedingly difficult due to problems simulating atmospheric optical depths
in alaboratory cell, especially for H,O. It is also tedious and expensive to make these large
optical depth measurements at the low temperatures found in the upper troposphere.

AIRS will require better CO, spectral line shapes than are presently available in the
literature. Recent theoretical developments in line mixing for CO, Q-branches can affect
AIRS brightness temperature by more than 10K. These effects are aready well
characterized in the line-by-line code used to generate the AIRS PFAAST model, a
specidlized version of GENLN2 [Edwards, 1992]. What is presently missing in
GENLNZ2 isan accurate far-wing model for CO,, especially in the 15 um region. L. Strow
(UMBC) and D. Tobin (Univ. Wisc.) are presently developing a phenomenological far
wing line shape model for the 15 um region of CO, that includes both P- and R-branch line
mixing and duration of collision effects. These enhancements to GENLN2 should reduce
many existing errors from the mostly empiricd models currently used in line-by-line
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forward models. A CO, line shape model for the important 4.3 pm channels is also under
development.

Recent laboratory work has greatly improved our knowledge of the H,O line shape
within the strong part of the H,O band [Tobin et al. 1996a, 1996b], a region important for
the determination of mid- to upper-tropospheric H,O. In addition, recent measurements
with the Atmospheric Emitted Radiance Interferometer (AERI) at the Department of
Energy’ s Atmospheric Radiation Measurement program Cloud And Radiation Testbed site
in Oklahoma should lead to an improved H,O continuum in the AIRS window channels
near 10 um. However, there are still considerable gapsin our knowledge of the H,O vapor
line shape. Of particular concern is the 1250 to 1400 cm™ region used to sense lower
tropospheric H,O. This spectral region is difficult to study in the laboratory because of the
long pathlengths required and is often too opaque in the atmosphere for good
measurements by AERI. Moreover, the H,O continuum switches from primarily a
quadratic dependence to primarily a linear dependence on H,O amount somewhere in this
spectral region. Continued field measurements, as discussed in Section 8, are needed to
improve our knowledge of the continuum in this region. If along enough cell can be
identified, laboratory measurements in the region would also greatly benefit the AIRS
forward model.

Line-by-Line Calculations

The monochromatic layer-to-space transmittances used to determine the parameters
of the AIRS PFAAST model areindirectly generated from the GENLN2 [Edwards, 1992]
line-by-lineradiative transfer model. Over the next severd years, we will incorporate the
spectroscopic advances discussed in the preceding section into GENLN2 in collaboration
with David Edwards & NCAR. These improved line-by-line models will undergo
continual validation and refinement using data acquired in the field campaigns discussed in
Section 8 of thisATBD.

Currently, 36 profiles are used in the regressions for the fast transmittance
parameters. However, 36 line-by-line caculations for each of the 100 AIRS pressure
layers are not performed directly with GENLNZ2. Instead, GENLNZ2 is used to compute a
very large look-up table of monochromatic layer optical depths for a set of 11 reference
atmospheric profiles. Such alook-up table is similar to the approach of Scott and Chedin
[1981]. Transmittancesfor the 36 regression profiles are easily calculated from this look-
up table. Layer optical depths scae linearly with gas amount since the look-up table is
monochromatic. In addition, the layer optical depths vary quite slowly and smoothly with
temperature, allowing accurate interpolations in temperature.

A look-up table with 11 evenly spaced temperatures is sufficient to accurately
interpolate the layer optica depths in temperature. This saves substantial computational
time versus the same calculations for the 36 regression profiles. Inclusion of an additional
regression profile smply requires an interpolation. Note, any change in physicsin the line-
by-line codes requires recal culation of the entire monochromatic look-up table. The current
look-up table neglects effects of water vapor self-broadening, thus introducing small errors
in water vapor transmittances. However, for the AIRS channel widths of = 0.5to 2 cm™
thisisareasonably small error, generdly < 0.2 K. Unfortunately, due to its large size, =
35 GByte, the monochromatic look-up table is quite cumbersome to use.

Each file in the look-up table covers a 25 cm™ interval with 10,000 points (0.0025
cm™ spacing) for 100 pressure layers (0.009492 to 1085 mb). The pressure layer
structure, described in more detail in the following sub-section, was chosen to produce
errors < 0.2 K in observed brightness temperatures for AIRS. For each infrared active gas
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and 25 wavenumber region from 605 cm™” to 2830 cm™, 11 tables are computed differing
only by the temperature profile. The 11 profiles are the U.S. Standard profile, and 10
profiles offset from it in £10K increments. On average, 7 gases must be included per 25
cm™ region. The continua due to gases such as N, and O, also areincluded in these tables.
Because their optica depths are easily computed for any profile, water vapor continuum
absorption and gases provided by HITRAN as cross sections, such as CFC's, are not
included in the look-up tables. Optical depths are computed using GENLN2 at a 0.0005
cm™ grid and then averaged to the database grid spacing of 0.0025 cm™. Consequently,
the highest dtitude optical depths are not truly monochromatic, but exhibit good integrated
optical depths. Therdatively large width of the AIRS Spectral Response Function (SRF)
resultsin negligible errors due to this averaging. Optical depthsfor all the HITRAN gases,
except CO, and H,O, are computed using the Voigt lineshape. As discussed earlier, the
CO, and H,0 lineshapes are modified from the Voigt lineshape.

AIRS Atmospheric Layering Grid

The atmospheric pressure layering grid for the AIRS PFAAST model was sdlected
to keep radiative transfer errors well below the instrument noise. Grid characteristics are a
function of the spectral region(s) of observation, the instrument resolution, and instrument
noise. The speed of the final fast transmittance model will depend on the number of layers,
S0 excessive layering should be avoided.

GENLN2 simulations indicate some channels need a top layer with pressures as
small as 0.01 mb, an dtitude of ~ 80 km. The region of primary importance to AIRS is
the troposphere and lower stratosphere, where layers on the order of 1/3 the nominal 1 km
vertical resolution of AIRS retrievals are desired. Smoothly varying layers facilitate
interpolation and avoid large changes in layer effective transmittances. The following
relation defines the pressure layer boundaries selected for AIRS:

P =(ai®+bi+c)"? (3.2.2)

where P isthe pressure in mb; i isthe layer boundary index and ranges from 1 to 101; and
the parameters a, b, and ¢ were determined by solving this equation with the following
fixed values: P, = 1100 mb, P,, = 300 mb, and P,,, = 5x10° mb. The 101 pressure layer
boundaries in turn define the 100 AIRS layers. These layers vary smoothly in thickness
from several tenths of a kilometer near the surface to severa kilometers at the highest
altitudes. Figure 3.2.3 displaysaplot of this atmospheric layer structure.

Ver 1.7 20 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

0-01 1 ¥
] +
3 +
0.1 3 +

4 +

e - +

o - n

Qo 3 -

£ 15 o

= +
- i

Qo . #

7 3 -+

((?) 10 3 ++++

2 T +++++

o . e
= o
3 o

100 | +++++++++++++
. =
3 T
3 T
1000 & T : : : : :
0 20 40 60 80 100
Layer #

FIGURE 3.2.3: AIRS PFAAST MODEL PRESSURE LAYER STRUCTURE.

Regression Profiles

One other necessary pre-processing step is the selection of a set of profiles for
caculation of the layer-to-space transmittances. The transmittances for these profiles
become the regression data for the fast transmittance coefficients. These profiles should
gpan the range of atmospheric variation, but, on the whole, should be weighted towards the
more typica cases. The range of variation provides the regression with data points
covering the range of possible atmospheric behavior, while the weighting of the mix of
profiles towards more typica cases produces a transmittance model that works best on
more statistically common profiles.

The process of cdculating and convolving monochromatic layer-to-space
transmittances is generally computationally intensive, thus imposing a practical limit on
the number of profiles one can calculate for usein the regression. As discussed earlier, 36
regression profiles (at 5 viewing angles each) are sufficient to cover most of the profile
behavior. This number is a compromise between the available time and computing
resources and the need to cover a wide range of profile behavior in the regression.
Choosing too few profiles leads to accuracy problems for profiles outside the range of
behaviors considered. Choosing more profiles than necessary does not hurt the fast model,
but does consume extra time and computer resources in the creation of the model.

Each profile should cover the necessary pressure (atitude) range with data for
temperature as well as absorber amount for each of the gases allowed to vary. The fixed
gases include dl those whose spatial and tempora concentration variations have a
negligible impact on the observed radiances. As previously mentioned, the variable gases
include H,O, O,, CO, CH,, and N,O. At present, transmittance models for H,0, O,, CO,
and CH, have been developed; dl other gases are included in the ‘fixed gas' category. In
the future, N,O and possibly CO, will be allowed to vary.

For those satellite viewing angles relevant to the AIRS instrument (O to 49
degrees), the effects of viewing angle can be approximated fairly well by multiplying the
nadir optical depth by the secant of the local path angle. This approximation neglects the
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minor refractive effect at large angles. Loca atmospheric path angles of 0, 38, 49, 56, and
63 degrees are used in the regression profiles to cover the 0-49 degree satellite view angle
range.

Fast Transmittance Model Parameters

All the steps leading up to the generation of the accurate layer-to-space
monochromatic transmittances have been described in the preceding sub-sections. They
are the inputs to the regressions that determine the fast transmittance coefficients used in
the AIRS PFAAST model as described below.

Breakout of Gases

With the layering grid and regression profiles selected, the monochromatic layer-to-
Space transmittance can be caculated. The gases are distributed into sub-groups that are
either fixed or variable. The detalls of how the transmittance model simultaneously
handles severa variable gases is somewhat complicated and beyond the scope of this
document. For simplicity, this discussion isrestricted to fixed gases (F), water vapor (W),
and ozone (O). The breakout of the other variable gases is similar. The monochromatic
layer-to-space transmittances for the 36 regression profiles are calculated for each pressure
layer, grouped into the following three sets, and convolved with the AIRS SRF,
F., = 1., (fixed)

FW,, =1, (fixed +water) (3.2.3)
FWO,, =1, (fixed + water + ozone)

The shape of each of the channel spectral responses functions will be measured carefully
on the ground. The centered frequencies will be determined on orbit by spectral calibration.
The accuracy of thisisdiscussed inthe L1B AIRSATBD.

Water continuum absorption is excluded since it varies slowly with wavenumber
and does not need to be convolved with the AIRS SRF. Later, the water continuum is
factored into the total transmittance as a separate term.

For each layer |, the convolved layer-to-space (c,l) transmittances are ratioed with
transmittances in the layer above, | - 1, to form effective layer transmittances for fixed (F),
water (W), and ozone (O) asfollows:

Feff - FOO,l
|
Foo,l—l
Weﬁ — FVV)o,I - Foo,l (3 24)
FV\()o,l—l Foo,l—l
FWO, FW
qefff — o, . |

CFWO,,, FW,,,

The exact form of these ratios reduce the errors inherent in separating the gas
transmittances after the convolution with the instrument spectral response function. The
total effective layer transmittance can be regenerated as follows:

FWO,
queff - Fleff DWeff quff = oo |

el 3.2.5
FWO,,_, ( )
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The convolution of aproduct of termsisin general not the same as the product of the terms
convolved individually. However, the above formulation guarantees the product of dl the
layer transmittances from layer | to o exactly returns FWO,,,.

The zeroth layer transmittance (i.e. when | - 1 = 0) istaken to be exactly 1.0. The
negative logarithm of these layer effective transmittances is taken to get effective layer
optica depths,

Kiixed = _In(Feff)
Kuaer = =1N(Wy) (3.2.6)

kozone = _ln(oeff)
which are fit with the layer transmittance model.

Predictors

The effective layer optical depths become the dependent variables in a regression to
calculate the fast transmittance coefficients relating a set of profile dependent predictors to
the layer effective optical depth. Care must be used to restrict the regression to k values that
are significant for radiative transfer.

The optimal set of predictors used to parameterize the effective layer optical depth
depends upon the gas, the instrument's spectral response function, the range of viewing
angles, the spectra region, and even the layer thicknesses. In short, no one set of
predictors is likely to work well in every case. Finding the set of predictors which gives
the best results is, in part, a matter of triad and error. However, there are some genera
trends.

For an instrument such as AIRS with thousands of channels, it is difficult to
develop individual optimal predictors for each channel. At this point, one set of predictors
for each gas has been developed that works sufficiently well for al channels. These sets of
predictors were determined by extensive trial and error testing of a few representative
channels estimated to span the range of behaviors present in the entire channel set. The
most difficult channels to model appear to be ones with low dtitude emission by water
lines and those covering the strong ozone band.

Theregression is prone to numerical instabilitiesif the values of the predictors vary
too greatly. Consequently, we follow the usual practice of defining the predictors with
respect to the values of a reference profile, either by taking a ratio or an offset. There is
also adanger of numerical instability in the results of the regression due to the interaction
of some of the predictors. Sensitivity of the output to small perturbations in the predictors
isavoided by systematic testing. There are practical difficultiesin detecting small problems
since we are performing on the order of 1 million regressions. We hope to regularize these
regressions in the future in a way that might allow automatic trimming of unnecessary
predictors on achannel by channel basis.

For smplicity, only the predictors for the fixed gases are shown:
1a 2)a®> 3T,

Har> 5T )T’ (3.2.7)

7)al, 8)aT,/T,
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where aisthe secant of the local path angle, T, is the temperature ratio T, e/ Treferences @Nd
T, isthe pressure weighted temperature ratio above the layer

|
T,(0) = Z P()(P() - P(i —D)T.(i -2 (3.2.8)
1=2
where P(i) is the average layer pressure for layer |. The predictors for the variable gases
can involve more complicated dependencies on the gas and the pressure weighted gas
ratios above the layer, similar to the temperature terms defined above. Note, terms like T,
(or W,, etc. for the variable gases) makes the layer | transmittance dependent on the
temperature (or gas amounts) in the layers abovel.

Regressions for Fast Transmittance Parameters

The accuracy of radiative transfer calculations made with the AIRS PFAAST
model improve significantly if the data is weighted prior to performing the regression.
Radiative transfer is insensitive to layers for which the change in layer-to-space
transmittance across the layer is ~ zero. This occurs when either the layer effective
transmittance is ~ unity, or when the layer-to-space transmittance above the layer is ~ zero.
Therefore, the data going into the regression is not al of equal importance to the fina
accuracy of radiative transfer calculations made with the model. We found it useful to
weight the datain terms of both its effective layer optica depth as well as the total optica
depth of all the layers above the layer under consideration.

The spectral dependence of the fitting errors are shown in Fig 3.2.4 and a histogram
of these errorsin Fig 3.2.5. The errors are caculated with respect to the regression profile
set, comparing the RMS errors between the brightness temperatures of input data and the
AIRS PFAAST model calculated values.
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FIG 3.2.4: RMS FHTTING ERRORS OF THE AIRS PFAAST MODEL .
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Errorsin the AIRS PFAAST Mode calculated for TIGR, alarge independent
profile set, are shown in Figures 3.2.6 and 3.2.7 and are very similar to those shownin
Figures 3.2.4 and 3.2.5. In general the RM S errors are at or below the estimated signal
noise for AIRS and spectroscopic errors. As previously mentioned, the largest errors are
generaly lassoci ated with either low altitude water or are inside the strong ozone band near
1100 cm™.

260
X 250+
c

— 2404

2301 TIGR Mean B(T)

220

0.30
0.25-
0.20
0.15-
0.10-
£ 0.054
m

RMS Error in K

[ [ [ [ [ [ [ [
660 680 700 720 740 760 780 800
Wavenumber (cm'l)

FG 3.2.6: AIRSPFAAST MODEL RMS ERRORS OVER THE 1761 TIGR PROFILES IN THE 15 um TEMPERATURE
SOUNDING REGION.

Ver 1.7 25 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

260 -

250+

240 -

B(T) in K

230

220 -

TIGR Mean B(T)

0.30
0.20 4

0.10 4

B(T) RMS Error (K)

I
1350

TROPOSPHERIC H,O, NEAR 7 um.

I I I
1400 1450 L 1500
Wavenumber (cm ™)
Fic 3.2.7: AIRS PFAAST MODEL RMS ERRORS OVER THE 1761 TIGR PROFILESIN A REGION SENSING

I
1550

Ver 1.7

26

18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

4. Mathematical description of the Coreretrieval algorithm

The AIRS Team Core Algorithm has two major goals:

* Meet the NOAA operational requirements.
* Meet the EOS science requirements.

The NOAA operational requirements are met by the first three agorithm steps:
microwave first guess, first pass cloud clearing, and the NOAA first product see (figure
4.1). The EOS requirements are met by the second pass cloud clearing and the fina
retrieval, asillustrated in figure 4.1.

In this section both the underlying physics and the algorithms used to deconvolve
the measurements into geophysical parameterswill be described. Many different types of
retrieval methodologies can be applied to this problem with advantages belonging to each
type. In general we can classify the approaches into two types. 1) pre-computed Empirical
Orthogona Function (EOF) or regression methods and 2) physically-based techniques
which match measured and calculated radiances and iterate until the match is within the
expected signal-to-noise. Approach 1 is the fastest methodology because dl the radiative
transfer calculations are done off-line. The first approach is used by NOAA to produce a
rapid and accurate estimate of the geophysical parameters which they subsequently refine
by arapid physical retrieval step to meet NOAA operationa time constraints. To produce
thefinal product, a more sophisticated physical retrieval, which includes the use of a scene
dependent noise covariance matrix, that allows for further refinement of the products and
predicted error estimates on a case by case basis.

There are also two approaches to the infrared cloud clearing problem: 1) account for
the effects of cloudsin the observed radiances and 2) eiminate the effects of clouds from
the observed radiances. The method chosen for the AIRS Team agorithm is approach 2
which has had a long and successful application to current and previous generations of
temperature sounder measurements. (Approach 1 will be examined as a research product
and is not described in this document.

The cloud clearing methodol ogy assumes very little about the radiative properties of
the clouds. The only assumption is that for a given channel, a given cloud formation
behaves the same in dl fields of view. To the extent that a cloud formation behaves
differently in different fields of view, it is in reality more than a single cloud formation.
The cloud clearing methodology can handle many cloud formations in principle, and has
been tested for two cloud formations. Should the assumption of cloud homogeneity
(between fields of view) for a given number of cloud formations bresk down, a
satisfactory solution will not be found and the profile will be rejected.

Thefina product algorithm does not attempt to solve for cloud properties simultaneously
with the temperature and moisture profile because errors in the cloud properties (radiative
properties of clouds can behave in a very complex way) will propagate into errors in the
other retrieved properties. We first obtain clear column radiances in a way that does not
require knowledge of the detailed radiative properties of the clouds, then obtain solutions
for other geophysical parameters, and then retrieve cloud properties.
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Overview
The approach the AIRS team has taken to meet the very stringent temperature

accuracy congtraint of 1K RMS Tropospheric error in 1 km increments is to provide
multiple retrieval strategies, designated as products. A ssmplified chart is presented in
figure 4.1 that describes the basic flow of the AIRS Team Algorithm design.

The main objective of the microwave initid guess agorithm (section 4.1) is to
characterize the atmospheric column in terms of precipitation and cloud liquid water
which are used in the cloud-clearing process throughout the core algorithm retrieval.

The NOAA first product algorithm (section 4.2) has two objectives. (1) delivers the
initial guess using in the final product algorithm and (2) within three hours of
observations, deliver to NOAA the retrieved surface and atmospheric data required for
operational weather forecasts.

The final product algorithm (section 4.3) delivers dl the AIRSAMSU/HSB Core
Products as defined in this document. The final product algorithm is a totally new state
of the art algorithm developed for a high signal to noise instrument with many
channels. The algorithm takes great care to describe al sources of channd noise
(defined as the error in the difference between observed and computed brightness
temperatures), especially errors due to cloud clearing. The algorithm then finds
solutions which best match these radiances, given the noise covariance matrix, with no
explicit consideration given to the estimated accuracy of the first guess, or the extent of
deviation of the solution for the first guess. The algorithm has been shown to have
only a very weak first guess dependence, and does not require considerations or
coefficients which depend on location or season. In addition, the algorithm produces
error estimates for al products, including clear column radiances, on a profile by
profile basis. Thefinal product algorithm is not dependent on the NOAA product, but
can use either the microwave product, the NOAA product, or the NOAA regression
guess, asitsfirst guess. Thefinal retrieval isonly weakly dependent on the first guess
used.

During the simulation testing (described in Section 5.2) and during the first phase

of instrument checkout the algorithm will be streamlined into its most robust and efficient
form. The mainstay of the algorithm design processis the use of simulated data.
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4.1 Microwave Initial Guess Algorithm (Rosenkranz/Staelin)

The microwave initia guess profile retrieval agorithm will derive temperature,
water vapor and non-precipitating cloud liquid water profiles from AMSU/HSB brightness
temperatures. It is intended to provide the starting point for the AIRS cloud-clearing and
retrieval. Thisisan iterative algorithm in which the profile increments are obtained by the
minimum-variance method, using weighting functions computed for the current
temperature and moisture profiles with the rapid transmittance algorithm described in
Section 3.1. A block diagram isshown in Figure 4.1.1.

The input vector of brightness temperatures is accompanied by an input validity
vector whose elements are either one or zero. This provides a way of handling missing or
bad data. Prior to theretrieval, the presence of rain in the field of view should be tested for,
using the output of the precipitation algorithm. If the rain exceeded some threshold, the
lower tropospheric channels could be excluded from use in the retrieval by setting their
validity flagsto zero.

Definition of the I nitial Profiles

Two options are allowed for the initid guess; one is a climatological input and the
other is a Kaman-type guess. The Kaman-type first guess uses a previously retrieved

(from AIRS/AMSU/HSB) temperature profile f’(d) a adistance d and a model for the
horizontal temperature autocorrelation function p(d); the minimum-variance initial profile
atd=0isthen

T(0) = (1~ a)T(d) +a(T) (4.1.1)

where <T> is the globa mean profile and o = 1-p(d). Previous studies (e.g. Briancon,
1986) have shown that for distances d less than a few hundred km, a reasonable model is
p(d) = exp(-d/L), where L isascae length that can vary with altitude, climate, season, and
direction. However, L = 1000 kmisatypical vaue for temperature. With the spacing d =
85 km in aprevious AIRS simulated data set (see section 3.1.3.a), the value of a was set to
0.08 for temperature. Currently o = 1 is used for relative humidity (i.e., no correlation).
These values have not been optimized.

Cosmic Background Brightness Temperature

Planck’s equation for radiant intensity is a nonlinear function of temperature.
However, a microwave frequencies, the physical temperatures encountered in the earth’s
atmosphere lie at the high-temperature asymptote of thisfunction. Hence, as discussed by
Janssen (1993), brightness temperature can be used as a surrogate for radiance in the
equation of radiative transfer, within an accuracy of a few hundredths of a Kelvin. The
only exception to this statement occurs with the cosmic background, which must be
assigned an effective brightness temperature at frequency v of

0. = (hv/2k) (€T + 1) (V"¢ - 1) Y, (4.1.2)
instead of its actual temperature T, = 2.73K, in order to linearize Planck’s function.
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Estimation of Surface Brightness

From the window channels of AMSU-A, an estimate of the surface brightness O,
which is the product of the surface emissivity and surface temperature, is obtained by
correcting the measured brightness temperatures ©* for atmospheric attenuation and
emission due to oxygen and water vapor. This correction is done by computing t, the one-
way transmittance of the atmosphere; O, the component of brightness temperature
emitted from the atmosphere on a direct path to space; and O, the sky brightness
temperature as observed from the surface. The ‘measured’ surface brightnessis given by:

& = (0% - Oy IT- Oy ]/ (1-0,/TJ (4.1.3)

inwhich Ty is the surface temperature from the initia profile. The four-parameter model
of Grody (1988):

Oy =[T,+ O/ )T /[1+ (vv,)], (4.1.4)

is used to represent the surface brightness spectrum. If the slope of surface brightness
between 31 and 50 GHz is positive, or if the surface brightnessat 31 GHz is less than 180
K, then the surface is categorized as awet scetterer. Inthiscase, s= 1.2 and T, = 0.93 T,
Otherwise, the surface is categorized as frozen; then T,= 0.93 Tgand v , = 31.4 GHz. The
frequency v , istypicaly 31 - 33 GHz for ice and snow (Grody, 1988) but the use of
channel 2's frequency simplifies the equations. The model is based on aircraft and ground-
based measurements and theoretical caculations for nadir view and may be revised after
experience with AMSU-A and -B data from NOAA satellites.

With two of the four parameters fixed and ©4 given at 31 and 50 GHz, Eq. (4.1.4)
is solved for the remaining two parameters. The algorithm then computes ©g for the
sounding frequencies that are sensitive to the surface. If ©4 (31 GHz) < 250 K, an
adjustment to theinitial water vapor column density is computed as

RHzo =1+ In[(THZO - 651) / (THZO - G)51*)] / 2[31 (4-1-5)

where Oy, is the surface brightness temperature at 24 GHz caculated from Eq. (4.1.4),
O* isthe “measured” value, B, isthe one-way water vapor opacity at 24 GHz through the
atmosphere, and T,,, IS the vapor-weighted mean atmospheric temperature. The
atmospheric correction is then recomputed for 24 to 50 GHz with the water vapor profile
multiplied by R,,,. The equations are iterated until

3

> [(Bg* - ©g) 17/ N]* < 3, (4.1.6)

i=1
where T, is the computed one-way atmospheric transmittance for channel i, and N, is the
RMS noiselevel of channe i. If the number of iterations exceeds a preset limit, an error
code is returned.

Treatment of the Surface Temperature

If ©5 were divided by surface temperature T, to obtain emissivity for use in the
temperature profile retrieval, then an error due to the variance of the a priori surface
temperature would be introduced. Instead, the equation of radiative transfer is written in
the form

O = Oy +T (O + Oy, - Oy, Og/ Ty) (4.2.7)
where O is the brightness temperature emitted from the top of the atmosphere.

direct

The atmospheric temperature vector is augmented by T, which is considered to be
diginct from the air temperature near the surface. The measured ©'s used in the
temperature profile retrieval are the 11 oxygen-band channels of AMSU-A, not including
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the 50.3 GHz channel (which was used to obtain ©g). The sensitivities of the measured
©'sto the elements of the temperature profile vector congtitute the observation matrix. The
elements of this matrix corresponding to the atmospheric part of the temperature vector are
given by the atmospheric weighting functions.  The elements corresponding to T, are
obtained by partia differentiation of Eq. (4.1.7):

00/0Ts =TTy O /TS’ (4.1.8)
The dependence on T is nonlinear here, because O is considered to be a known input.

The covariance of the temperature vector is also required by the estimation
algorithm described below. The atmospheric covariances were obtained from the TIGR
dataset (Chedin et al., 1985). The difference between T, and the air temperature near the
surface (T,,,;,) is assumed to have zero mean and standard deviation of 4 K. Thus, T4 has
alarger variance, by 16 K?, than T,,,,, but its covariances with other levels are equa to
those of T,,,,.

Estimation of the Temperature Profile

Giventheinitia profile T, the estimated profile is to be determined from a vector

©* of observed brightness temperatures, which for small difference profiles T-T is rdlated
to the true profile T by

@ =O(M)+W(M[T-T]+e (4.1.9)

in which @(T’) Is the brightness temperature vector that would theoretically be emitted

from the atmospheric profile described by T and the rows of the matrix W(T) are
weighting functions, whose elements are in genera dependent on the profile; e represents
unknown measurement errors. Although not explicit in equation (4.1.9), the weighting
functionsin the microwave band also depend on O, on surface pressure, on humidity, and
a very low pressures on the magnetic field. If the vaidity of a channdl is zero, then the
row of W corresponding to that channel is set to zeros. The dimensions of the matrix
remain the same.

The new, minimum-variance estimate of T is obtained by Newtonian iteration
(Rodgers, 1976, Eq. 101)
T, =T+RW (T, )X (4.1.10)
where R, isthe covariance matrix of T - T, X isthe solution vector to

W(T, JRW'(T, ) +R|X =0 -O(T, ) +W (T, )[T, - T] (4.1.12)

and R, isthe (normally diagonal) covariance matrix of e. Superscript t indicates transpose
and 'i’o =T. R, includes the effects of surface brightness uncertainty and instrument noise.
Iteration of Egs. (4.1.10) and (4.1.11) stops when one of the following conditions is met :
(2) the estimate fn meets the closure criterion

NB

> [0%-0,(T,) ]/ NEAT? < N, (4.1.12)

i=1
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where NEAT; isthe instrument noise on channel i and N is the number of valid elements
in ©*; or (2) when successive computations of the left side of (4.1.12) change by less than
1% of the right side; or (3) when the number of iterations exceeds a preset limit, currently
8.

Estimation of Relative Humidity and Clouds

This algorithm is based on retrieval methods described by Wilheit (1990) and Kuo
et al. (1994). Retrieval of RH uses the four channels of HSB and the 89 GHz channel of
AMSU-A. Inthe present algorithm, the HSB measurements are averages in 3 x 3 spatia
arrays which aproximate the AMSU-A field of view. The measurements of brightness
temperature are a result of the vertical profile of atmospheric opacity relaive to
temperature in the atmosphere. To distinguish between opacity, a a given dtitude, due to
water vapor and opacity due to liquid water, it is necessary to introduce some a priori
information or constraint. For this purpose, cloud coverage is parameterized as in the
stratiform condensation model of Sundgvist et al. (1989), where a relaive humidity
threshold determines the onset of condensation. If the instrument had infinitesimal
horizontal resolution, an appropriate threshold would be 100% relative humidity.
However, it is assumed that the condensation process is not spatially resolved, hence the
threshold islessthan 100%. Currently, the threshold is

_ 5% -land
oh = %0%—Water
which is the same as in NCEP's Eta model, which was used to generate the ssimulation

data. It isanticipated that these thresholds will be adjusted after experience with AMSU-B
data.

RH (4.1.13)

The RH profile stored by the algorithm has a composite definition. When RH is
less than 100%, it is interpreted as the relative humidity of the clear part of the field of
view. (If RH <RH, thisistheentirefield.) Within the cloudy part of the field, the water
vapor profileis saturated. Hence, the average vapor density in thefield of view is

Op. RH/100, if RH < RH,,
p, = Op. [(1- b) RH/100 + b] if RH,, < RH < 100, (4.1.14)
D, if RH > 100,

where p, is the saturation value of vapor density, and
b=(RH-RH)/ (100 - RH ). (4.1.15)

The liquid water density p, averaged over the field of view is assumed to be given by

0o if RH<RH,,,
pp = O (4.1.16)
0C, psb if RH>RH,,,

where C, is a preset constant, currently 0.04. In this way, RH (combined with ps, which
depends only on the temperature profile) serves to define both the vapor and cloud liquid
water density profiles. Note that RH can take values > 100 in cloudy regions.

The saturation vapor density is computed from the retrieved temperature profile.
Saturation vapor dengity is calculated with respect to liquid water (by extrapolation) even
when the temperature is below 273 K, because ice clouds are not considered within the
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context of thisalgorithm. (Absorption from ice is much less than from liquid water, and
scattering is not included in the radiative transfer formulation.) This agorithm therefore
allows supercooled liquid water and water vapor greater than the saturation value over ice.

Measured brightness temperature ©* is related to the RH profile by
O" =O(RH, T) + Wgy (RH, i)[ RH- hr] re (4.1.17)

where O(I~?H,:r) is a computed brightness temperature vector and the matrix
Wiy (IEQH,T) has elements which for a given channel and pressure layer are equal to

W, (RH,T) = 90/3K  (9k/dp, * dp,JORH +y 0 /ORH), (4.1.18)

where K represents the opacity of the layer and y = 0k/dp,. The rapid transmittance
algorithm computes the coefficient y in the small-droplet (Rayleigh) approximation.
Hence, it is intended to be applied only to non-precipitating cloud situations. A quadratic
model is used to compute the opacity of water vapor:

K =B, p, + B, p,” + other contributions; (4.1.19)
hence
oK
= + 2 . 4.1.20
a0, By + 2B2py ( )
where
B, = B(py. T)-B2py, (41.21)
B2 =dB/dp,. (4.1.22)

The coefficients 3 and df3/dp, are computed by the rapid transmittance algorithm using the
temperature profile retrieval and the initidl moisture profile. Recomputation on each
iteration is unnecessary. As a consequence of (4.1.14-16) op,/oRH and ap, /0RH depend on
RH asfollows:

op, [p /100, if RH<RH,,,
— = [0.02(100-RH) p./ (100 - RH,,), if RH,,, < RH < 100,
ORH 0o if RH > 100,

(4.1.23)
op, D, if RH<RH_,,
— = 0OC_ps/ (100 - RH,), if RH=RH,_, (4.1.24)
ORH O

The estimate of the RH profile is obtained by iteration of equations smilar to
(4.1.10) and (4.1.11), except that Eyre’ s (1989a) method of damping is used to avoid large
relative humidity increments, because of the nonlinearity of the problem:

RH, = RH,; - 6[ RHpq = h"] +8 Rgy Wlt?H(ARHn-l’ :I') XRH (4.1.25)
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inwhich IEQRH isthea priori covariance matrix of RH - RH, X gy IS the solution vector
to

[WRH(F?HH, T)oRpy Whhi(RHp-, T)+ Re] Xgn =0 ~©(RHp_1, )

. e 5 (4.1.26)
+W(RH.1, T) 6[RHn_1 . RH],
and
if© —0(RH,_,, T|<10K foral i,
5= % ! '( n-1 ) (4.1.27)

(0.1 otherwise.

Here d isascalar rather than a matrix as in Eyre's paper. For the moisture channels, the
measurement error covariance R, is the sum of contributions due to surface brightness
uncertainty, instrument noise, and a diagonal error of (1.5 K)? which approximately

represents errors in ©(RH, T) resulting from errors in the temperature profile retrieval.
The convergence criterion is similar to the temperature algorithm. Because convergence is
determined from the brightness temperature residuals, which in turn are computed using
the vapor and liquid column densities, the role of RH in this algorithm is only to introduce
the a priori statistics and constraints.

Thereis adiscontinuity in W,,,(RH,T) at RH = RH_;,, due to egs. (4.1.23-24). To
compensate in an approximate way for this effect, when RH crosses the RH,, threshold
in the positive direction on any iteration, the increment of RH above RH,, isdivided by 5.
There is no discontinuity at RH = 100. After each iteration, the water vapor and liquid
water profiles are computed from the new RH, using (4.1.14-16). Subsequent iterations
then use the appropriate absorption coefficient for liquid or vapor. Findly, the estimated

RH profile is limited by zero from below and from above by a vaue which converts to
0.01 g/cm? liquid column density, per layer. This latter value is intended to approximate
non-precipitating cloud dengties, and hence it will tend to leave large brightness
temperature residuals in situations of precipitation, and expecidly when scattering is
occurring. If the left side of eg. 4.1.12, computed for the five moisture channels, is greater
than a preset threshold value, then the ice scattering flag will be set at al atitudes for which
clouds are present and the temperature estimate is below 273 K. On the basis of
experience with SSM/T2 data, the scattering threshold is currently set at 500.
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FIGURE 4.1.1. MICROWAVE INITIAL-GUESS ALGORITHM.
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4.2 First Product -- (Goldberg/McMillin)

The cloud clearing/retrieval system supplied by NOAA provides a “first product”
of level 1B radiance, and level 2 surface, temperature, and moisture parameters using
combined InfraRed(IR) and MicroWave(MW) measurements from  the
AIRS/AMSU/HSB instrument suite. The system produces the following outputs: (i)
cloud cleared radiances for the entire AIRS spectrum; (ii) retrieved temperature and
moisture profiles; (iii) retrieved surface temperature; and, (iv) retrieved IR and MW surface
emissivity and reflectivity. Both the first guess and physical retrievals are produced for (ii)
& (iii), while currently only afirst guess retrieva is produced for (iv). These products
provide afirst solution to which additional adjustments are made by a final product system
(described in Section 4.3).

The “first product” system is composed of three major components:

1. Cloud clearing procedure that produces clear column AIRS radiances in
cloud contaminated fields of view

2. A regresson procedure that produces first guess retrievals from
AIRS/AMSU/HSB observations

3. A rapid physical retrievd procedure to produce retrievals from
AIRS/AMSU/HSB observations using the output from (2) as an initid
guess.

Each of these components will be discussed in detail below.

Level 1 Cloud Clearing Algorithm

The function of cloud clearing is to obtain clear column (cloud cleared) AIRS
radiances from partially cloudy ones so that the retrieval process can be applied to the cloud
cleared radiances. The basic approach of infrared radiance cloud clearing, as introduced by
Smith (1968) asthe N* technique, and by Chahine (1970, 1974) as the Eta technique, is an
approach in which cloudy information in “adjacent pairs’ are used to extract clear
radiances. NOAA has been developing and using cloud clearing procedures based on the
N technigue (McMillin and Dean, 1982) in its TOVS retrieval operations. The cloud
clearing technique used for AIRSYAMSU/HSB has several important modifications from
the current approach used in TOV'S operations. The modified cloud clearing procedure is
capable of utilizing the AIRS high spectral resolution data and operating in the presence of
two layer gray clouds.

NOAA'’s cloud clearing technique is composed of (1) an eigenvector noise
reduction of observed AIRS radiances, (2) an AMSU regression estimation of AIRS
driver channels, and then (3) atwo-layer cloud clearing based on quantities caculated from
the two previous steps. To introduce the entire notion in a more logical way, fundamental
concepts are discussed first and each of the stepsislaid out as the discussion progresses.

Fundamental Concepts of NOAA Cloud Clearing

In the simulation study, two layer, non-overlapping clouds are present in the
observational FOV. The clouds are assumed to be gray having infrared emissivities
independent of frequency. Under these assumptions, the observed infrared radiance of any
cloudy channel at frequency v is expressed as:
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Y=(1l-0.& -0, )R +ae R +aE R,
(4.2.1)

where R”, denotes the clear column radiance a wavenumber v, R” ; denotes the overcast
radiance if the first (lower) cloud covers the entire field of view, and R”_, denotes the
overcast radiance if the second (higher) cloud covers the entire field of view. In Equation
(421 a, g, anda,, &, are the cloud fractions and cloud emissivities of the first and
second clouds, respectively. Note that Equation (4.2.1) satisfies not only cloudy channels
affected by both clouds but also the channels affected by one cloud or even clear channels.
For example, if the weighting function peak of one channel is between the lower and higher
clouds, and therefore only contaminated by the higher cloud, then overcast radiance of the
channel for the low cloud isjust the clear radiance (R’,, = R". ) and the equation degrades
to asingle cloud formation equation.

By rewriting Equation (4.2.1) and defining variables
RY=R'-R’,,
RY,=R",-R", (4.2.2)
R, =R, - R,
we have following equation:
=a,e RV, + 0,6, R, (4.2.3)

Now if we have three channels with frequenciesv,, v, and v, , Equation (4.2.3)
may be written for each of the channels asfollows:

R''=a,e, R*, + 0., R'",, (4.2.4)
R'?=a,, R?, + 0,8, R'?, (4.2.5)
R'®=a,, R3, + 0,8, R"®, (4.2.6)

where the superscripts 1, 2 and 3 represent the corresponding channels with frequencies
v,, v, and v,, respectively. Equations (4.2.4), (4.2.5) and (4.2.6) indicate that the observed
radiances of the three channels lie on a plane that is defined by the three points (¢,R"*,,,
e,R'*,), (R?,, &R%,), and (e,R>,, €R’>,). The radiance for one channel can
be expressed as alinear combination of the radiances at the other two channels as.

R''=aR? + bR’ (4.2.7)

where a and b are constants. Combining Equations (4.2.2) and (4.2.7) gives the following
equation:

R'=aR? + bR*+c (4.2.8)

where c is determined by an arbitrary point in the plane defined by Equation (4.2.7). R’',,
and R, in Equation (4.2.7) aswell as a, b and c in Equation (4.2.8) are fixed once the
two cloud heights are defined. Equation (4.2.8) shows the equation for the plane defined in
three dimensional space for severa fields of view with the same low cloud height and
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same high cloud height but varying cloud fractions for the two non-overlapping cloud
formations. Therefore if we can (1) determine the relationship among the three channels
(i.e. find constants a, b and c¢), and (2) determine clear column radiance for two of the three
channels (e.g. R?, and R®),we can determine the clear column radiance of the third
channel from Equation (4.2.9).

R, =aR* + bR’ +c (4.2.9

Vaues of a, b, and c are found by taking the 9 values for a3 by 3 array. These 9
measurements give 9 valuesof R', R?, and R?, resulting in system of 9 equations for
the 3 unknowns (a, b, and ¢). The solution is obtained by subtracting the mean values and
doing aleast squares solution for aand b. In this case, the expansion is about the mean of
the values of the 9 samples since the clear values are not known. The value of c, is given

by
c=R'-aR?’-bR? (4.2.10)
where the bars represent average values.

In NOAA’stwo layer cloud clearing technique, two AIRS channelsv, and v, are
selected as driver channels to derive clear column radiance for any other channel R*.. As
expressed in Equation (4.2.9), R?, and R®_ are necessary for caculating R*,, therefore
one of the criteriafor selecting v, and v, is that there should be an easy and accurate way
to determine R?, and R®.. Once the driver channels are selected, the relationship between
these drivers and any other channdl v,, as expressed in Equation (4.2.8), needs to be
determined so that Equation (4.2.9) can be used with knowledge of R?, and R®.. In the
following sections, procedures for calculating cleared radiances for driver channels,
selecting drivers, and determining the relationship between the driver channels and the
other channels will be presented. Finally, other important issues related to improving cloud
clearing accuracy will be discussed.

Obtaining Clear Radiances for Driver Channels

In the preliminary version of NOAA’s cloud clearing agorithm, there are two
methods to determine driver channel clear radiance R?, and R®;: (1) Use regression to
estimate AIRS drivers from AMSU measurements making use of AMSU’s ahility to
penetrate clouds; (2) Integrate retrieved geophysical data to obtain AIRS drivers. Both
methods are used in the system depending on the resources available and the steps in the
process.

AMSU regression is used to perform the initid cloud clearing since clouds are
fairly transparent to microwave radiation and there is no other source of information about
R?, and R®, . Sources of error in the cloud clearing include AMSU instrumental noise,
cloud liquid water contamination of the microwave measurement, microwave emissivity
and regression uncertainty. The different surface response of the two instruments is a
major source of error. Infrared and microwave emissivities and reflectivities respond
differently to different surfaces (vegetation, sand, water etc.). These differences will be
reflected in the regression uncertainty and eventually contribute to the cloud clearing error.

A smulated training data set of 12000 AIRS/AMSU collocated measurements
covering al seasons is used to calculate regression coefficients to estimate AIRS clear
radiances from AMSU brightness temperatures. In principle, AMSU temperature channels
that are minimally affected by water vapor and surface contributions are the best candidates
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in predicting AIRS drivers, which are preferably also temperature channels. When clouds
are present AMSU temperature channels are also contaminated by cloud liquid water
(Staelin et al., 1975 and Grody et al., 1980). To minimize these impacts, AMSU water
burden channels 1, 2 and 15 (which are sendtive to liquid water) are included in the
regression to correct the liquid water contamination in AIRS clear driver estimations.

Regression coefficients for predicting the brightness temperatures of the AIRS
driver channels from the AMSU measurements are calculated using the ‘Noise Guided
Stepwise Regression’ as described by McMillin (1991).

The AIRS forward calculation from theretrieval is used when a previous round of
cloud clearing/retrieval procedure is finished and there is need to iterate the procedure for
more accurate results. A forward model first calculates atmospheric transmittances for the
designated AIRS channels from geophysical profile data, then integrates the transmittances
with the Planck function to simulate clear column radiances (Susskind, et al., 1983). The
advantage of this method is that one can simulate and use the clear driver radiances without
instrumental noise in deriving other AIRS clear radiances. Of course, the condition of
using this method is that one has to have relatively accurate retrieval to start with. The
preliminary version of NOAA'’s cloud clearing/retrieval algorithm has the option of one
iteration which yields a significant improvement in some of the test cases.

Selecting Cloud Clearing Driver Channels

The sdlection of driver channels depends on several factors. Because clear radiances
of the selected driver channelswill later be used to derive clear radiances of al other AIRS
channels, a great deal of effort should be made to satisfy following conditions in the
selection process:

» There should be an easy and accurate way to calculate the clear radiances of the driver
channels.

* ldeally one of the drivers should haveit'sweighting function peak at or lower than the
lowest cloud top so that it is sensitive to the low cloud as well as the high cloud. The
other driver should have it's weighting function peak close to the level of the second
cloud to maximize the independent response to the second cloud.

* Instrumental noisein the driver channel radiances should be minimized before deriving
the relationship expressed by Equation (4.2.8)

For an AMSU regression estimation of AIRS clear drivers, the regression
coefficients are calculated from the training AIRSAMSU simulated observations. The
coefficients are then applied back to the training data set itself for dependent testing. Those
AIRS temperature channels that yield the smallest RM S differences in the dependent test
are selected as clearing driver channels.

Multiple clouds in the FOV may have single or multiple cloud formations as
defined by Chahine (1977). Re-examining Equation (4.2.5) and (4.2.8) reveds that if
a,/a, is constant among nine AIRS spots (i.e. the AMSU footprint has only one cloud
formation) then only one cloud clearing driver is needed. However, if there are two cloud
formations, the second driver channel is necessary to provide adequate information for
cloud clearing.

Currently, the smulated clouds are at or above 850 mb, AIRS channels with
weighting function peaks around 875-825 mb will be contaminated by both clouds
regardiess of the cloud formation. Therefore an AIRS temperature channel in this region
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that yieldsa minimum RMS residud in the AMSU regression dependent test can always
be used as driver R? to establish the relationship in Equation (4.2.8). The first clearing
driver isillustrated in Figure 4.2.1 with it sweighting function plotted as a blackened solid
line.

e Eﬁ%ﬁee.:q t Second .
driver channel High cloud

Low cloud
First driver
annel

FIGURE 4.2.1 CLouD CLEAR DRIVER CHANNEL SELECTIONS

In two cloud formation cases, we need to find a second driver channdl that is only
contaminated by the higher cloud. As shown in Figure 4.2.1, if the high cloud top is
around 600 mb the second driver should to have it's weighting function peak around 600
mb as illustrated by the thin solid line. If the high cloud top is higher than 600 mb (as
illustrated by the broken box plot), the second cloud clearing driver should be the one
shown by the broken line. One consideration in selecting a second driver when two cloud
formations are present is that the second driver should maximize its response to the high
cloud only and consequently have a different behavior from the first driver. The best driver
channel to detect the high cloud would be one that differs from the first driver (in terms of
weighting function peaks) but is still at or under the high cloud so that it responds only to
the high cloud. This makes it independent from the first driver. Of course, the cloud
heights are not known.

To find the appropriate second driver, three candidates, having weighting function
peaks around 600 mb, 400 mb and 200 mb respectively, are examined. The dependency of
each of the candidate drivers upon the first driver is cdculated in terms of the correlation
coefficient. An inter-comparison of these caculated correlations is conducted. The
candidate that is most independent of thefirst driver (i.e. givesthe smallest correlation with
the first driver) is selected as second driver and its radianceis used as R®.
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In practice, the clearing drivers are not actualy two channels but two groups of
channels having the same weighting function peak heights within the group, but distinct
weighting function peak heights between the groups. Radiances of channels in agroup are
averaged and used in the cloud clearing as one driver channel in Equation (4.2.8). This
minimizes the instrumental noise. Table 4.2.1 lists selected groups of channels and their
weighting function peak pressures.

Weighting Function 875-825 625-600 425-400 200-180

Peak Pressure (mb) (mb) (mb) (mb)
725.693 725.391 704.539 688.003
Driver Channel 726.601 729.939 706.009 691.164

Frequency (L/cm’?) 728.116 739.428 706.303 691.452
749.978 742.207 721472 693.183

TABLE 4.2.1 SELECTED AIRS CLOUD CLEARING DRIVER CHANNELS

Each group has four channels (with weighting function peaks around the same
pressure) to be averaged. However, radiance values for different channels can have a wide
range even when they all correspond to the same atmospheric region due to the wavelength
dependence. A direct average of radiances would over emphasize channels with large
radiance values and neglect those with small radiance vaues. An effective average radiance
isintroduced as aweighted average of radiances of different channels. The weight of each
channel is proportional to the inverse of the Planck function B(v, T,) at afixed temperature
T, = 270K, and frequency of this channel.

R, =2 w(() R (4.2.11)
wv)O1/B(v, Ty) and Zw(v)=1 (4.2.12)
where w(v) isthe weight of the channel with frequency v in the driver group.

Determining Cloud Clearing Relationship

Having selected the cloud clearing driver channels and obtained the driver clear
radiance, we will determine the relationship expressed in Equation (4.2.8). The
determination of values of a, b and ¢ in Equation (4.2.8) from AIRS observations is
discussed next.

In the AIRSJAMSU simulation study, one AMSU footprint covers nine AIRS
spots each of which has the same cloud type and height but different cloud fractions. For
any given AIRS channel, the only difference among the nine radiances is due to the
difference of cloud fractions and AIRS instrumental noise. The AIRS radiance is linearly
related with cloud fractions among the nine AIRS footprints. This linear relationship aso
holds true for the cloud clearing driver effective average radiance which is a linear
combination of AIRS radiances. These assumptions in the simulation indicate that AIRS
radiances satisfy Equation (4.2.8) to within the AIRS noise level in an AMSU footprint.
Using the nine AIRS observations as samples, the relationship between any channel and
the two drivers (defined by a, b and c¢) can be found with a multiple regression.

Having determined the relationship between any AIRS channel radiance R* and the
two clearing drivers R? and R®, we can caculate the clear radiance R*, of any channel
from Equation (4.2.9) with the knowledge of the driver clear radiances R*, and R®..
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AIRS Cloudy Radiance Noise Reduction

Asin the N" technique, NOAA’s AIRS cloud clearing procedure is also sensitive
to AIRS random instrumental noise. In the relationship between the driver channels and a
given AIRS channdl, coefficients a, b and ¢ are affected when noise is present. Any error
in the relationship will be carried to clear radiances when applying Equation (4.2.9). Before
cloud clearing, any procedure that can reduce the observational noise level will be helpful in
calculating accurate values of a, b and ¢, and consequently will improve the cloud clearing.
An eigenvector analysisisintroduced to reduce or remove the random factor (noise) in the
observation data.

In order to reduce the noise, the AIRS brightness temperature observations are
converted to an eigenvector expansion. The 30 coefficients associated with the 30 largest
eigenvalues are kept and used to regenerate the radiances. Since errors tend to be
associated with the smaller eigenvectors which are the onesthat are ignored, this procedure
reduces the random errors in the reconstructed radiances.

Cloudy and Clearing Channels under Cloudy Conditions

An important fact about cloud contamination of infrared observations is that, even
in cloudy conditions, not al the infrared channels are affected by clouds. For example, if
one AIRS channel is sengtive to the upper portion of the atmosphere, and therefore not
contaminated by any low clouds, it should not be cleared if only low clouds are present. In
this case averaging the nine AIRS spot radiances for this channel is the best solution for
clear radiance. Clearing such a channel would only greatly amplify the noise. We therefore
need to determineif achannel is cloudy or clear before proceeding to cloud clearing.

Asshown in Equation (4.2.1), if achannel is cloud contaminated its radiance must
be linearly related to the cloud fraction. In the simulation, and most likely in redity, the
cloud fractions in the nine AIRS spots are variable, hence, for any cloudy channel with
frequency v the radiance standard deviation o(v) (= Y3V = [R,(V)-R,,.\W)]% i = 1,..,9)
over the nine spots must be greater than a threshold (currently half of the channd’s
instrumental noise level) to reflect the existence of variable cloudiness. Homogeneous
AIRS radiances over an AMSU footprint indicate the footprint is either clear or overcast
for this AIRS channel. The quantity o(v) can then be used to indicate cloud contamination
of any channel.

Weighting function peaksof all AIRS channels are pre-calculated and stored to help
decideif achannel should be cleared. All AIRS channels are ordered in terms of weighting
function peak pressures in an ascending sense. Cloud clearing proceeds from the bottom
channel to the top. Each channel is checked to seeiif :

o(v) > 0.5 NEAR(V) (4.2.13)

where NEAR(V) isthe noise equivalent radiance for that channel. If Inequality (4.2.13) is
true, this channdl is cleared using Equation (4.2.9) and the next channel is considered. If
Inequality (4.2.13) is false, dl nine AIRS radiances are averaged to get the clear radiance.
When the number of times Inequdity (4.2.13) is fase reaches 10, the cloud top is
considered to be reached and al the remaining channels are assumed clear and clear
radiances are calculated from averaging the nine radiances.
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First Guess Regression Procedure

NOAA/NESDIS uses an eigenvector global regression procedure to provide fast
and accurate initial guesses for temperature and moisture profiles as well as surface
emissivity and reflectivity using simulated AIRSAMSU/HSB data. It is assumed that dl
independent AIRS radiances have been preprocessed by the cloud clearing module
described in the last section. Following the approach of Smith & Woolf (1976),
eigenvectors from a brightness temperature covariance matrix, calculated over some
dependent training ensemble, are used as basis functions to represent the
AIRS/AMSU/HSB radiometric information. Eigenvectors of covariance matrices are
commonly referred to as Empirical Orthogonal Functions (EOF's) in the literature, a
convention that will be adopted throughout the remainder of this section. Because of the
large number of channels measured by AIRSAMSU/HSB, the egenvector form of
regression is crucia for exploiting the information content of al channels in a
computationally efficient form. By representing radiometric information in terms of a
reduced set of EOF's (much fewer in number than the tota number of instrument
channels) the dimension of the regression problem is reduced by approximately two orders
of magnitude. Another advantage of using a reduced set of EOF's is that the influence of
random noise is reduced by eimination of higher order EOF's which are dominated by
noise structure. It should be noted that if al EOF's are retained as basis functions the
eigenvector regression reduces to the ordinary least squares regression solution in which
satellite measurements are used directly as predictors. The mathematical derivation of the
EOF regression coefficientsis detailed in the following sub-sections.

Generating the Covariance Matrix and Regression Predictors

A training ensemble of temperature, humidity, and ozone profile data are used to
generate brightness temperatures for adl AIRS/AMSU/HSB channels. The deviations of
the brightness temperatures from their sample mean are stored in the matrix A©, ., a
matrix of dimensions [nchan x nsamp], where nsamp is the sample size of the training
data set and nchan is the total number of instrument channels. The brightness temperature
covariance matrix from which the EOF s are derived is then generated as follows:

O =~ AO; (0O, (4.2.14)
nsamp

where superscript T denotes matrix transpose and the matrix O, is a square matrix of
order nchan. The diagona elements of O, represent the variance of the respective
channel brightness temperatures while the off diagonal elements represent the covariance
between pairs of channels. An eigenvector decomposition is performed on the matrix ©_,

giving:

@, = Al (4.2.15)

wherel isthe [nchan x nchan] matrix containing the eigenvectors, or EOF's, of ©_, in
it's columns. A is the diagona matrix of eigenvalues, the first eigenvalue being the first
diagonal element, the second eigenvalue the second diagonal element etc. The EOF's are
ordered in terms of the amount of the total data variance each explains, the first explains the
most variance and each successive EOF explains progressively less of the totd data
variance. Asdiscussed in the beginning of this section, some subset of the total number of
EOF's is best for capturing the information content of the radiometric data while
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minimizing the effects of random measurement noise. For the purposes of notation let m
be the optimal number of EOF's for describing the information content of the covariance
matrix from Equation (4.2.14). Considering the large number and interdependent nature of
the AIRS/AMSU/HSB weighting functions it is reasonable to assume that m << nchan,
where m represents in some sense the number of independent pieces of information
available from the measurements. Experiments with AIRSAMSU/HSB simulated data
have shown m = 40 to be optimal for capturing the information content of the
measurements from these three instruments. Only insignificant improvements in retrieval
accuracy have been observed when using greater numbers of eigenvectors. Once m is
determined from experimentation those EOF s are used as basis functions to represent the
original brightness temperature information in terms of expansion coefficients commonly
referred to as principal components. First we express A© as an expansion of the
EOF s as follows:

Train

AT

Train

=aT} +al, +-sal (4.2.16)

m m

where AT’

Train

isthe jth column of matrix A®, ,, and al,al,--.aj are the corresponding m
principal components for the jth sample. In order to solve Equation (4.2.16) for the
individual principa components recal that the EOF's T ,f,,--f  ae mutualy
orthonormal. Thatis:

~ ~ O fori=j
I'i°FJ= !

4217
fori#j ( )

where () denotes the inner product of two vectors. Using the condition of orthonormality
and the distributive property of the () operator, each individual principa component is
expressed as.

al =ATJ . T, #1,2,-,m and

(4.2.18)

j=1,2,---,nsamp

Generating the Regression Coefficients

A standard least squares regression technique is used to generate regression
coefficientsusing an a priori training data base such as an operational radiosonde match
file. Thefollowing regression model is used to generate the coefficients:

AV =CA (4.2.19)

Train

where, AV isthe matrix of deviations of the predictants (temperature, moisture etc.) from
the training sample mean, A,,,, IS the [m x nsamp] matrix of principa components
calculated using Equation (4.2.18), and C isthe [n x m] matrix of regression coefficientsto
be solved for where n isthe total number of predictants. More specifically:

Ver 1.7 45 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

Dvll - \_/1 Vl2 -V Vlnsamp _vl 0
O . . O
av=g i i o (4.2.20)
Ba—Va VooV, o VEEm-oyH
and,
Bh} 312 a;‘sampg
ATrain = O : : O (4221)
%Lq a2 . anmsampg

where, n = number of predictants (i.e. the number of temperature, moisture, and/or
emissivity/reflectivity points), nsamp = number of samples in the training set, m =
number of principal components used and bars indicate averages over the training sample
Set.

The least squares regression solution of Equation (4.2.19) is:

C=AVA]

Tra (A 'AIrain)_l (4222)

Train

where the T superscript denotes matrix transpose, and the -1 superscript denotes matrix
inversion.

Applying the Coefficients to | ndependent Data

Once the coefficient matrix, C, is calculated from equation (4.2.22) the coefficients
may be applied to independent data using equation (4.2.19). The matrix defined in
equation (4.2.20) would now contain deviations of the independent data from the training
sample mean. Mathematically, the application processis.

V=V+CA,, (4.2.23)

where Visthe [n x nobs] matrix of retrievals, V thetraining level 2 vector from equation
(4.2.20), C isthe [n x m] matrix of regression coefficients from equation (4.2.22), and
A, is the [m x nobs] matrix of principal components caculated from the level 1B

observations. A . iS generated using equation (4.2.18) where A©,,,, IS replaced with
0O, the matrix of deviations of observed brightness temperatures from the training
mean.

Minimum Variance Physical Retrieval

The starting point of al physical retrieval agorithmsisthe definition of the radiative
transfer equation to establish the relationship of atmospheric and surface geophysical
parameters to the outgoing radiance that the instrument measures. Given a set of
radiances, the objective of a physica retrieval algorithm isto find a realistic solution of
geophysical parameters that will be consistent with those radiances.
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In the InfraRed(IR) region of the spectrum the radiative transfer equation (RTE) for
aclear sky, plane parallel, homogenous atmosphere in Loca Thermodynamic Equilibrium
(LTE) may be represented as:

R; =¢,B,(T)1, + I B (T(P))—(p)dp+ p,B, (Tsun)T, cos6 (InfraRed) (4.2.24)

surface Reflected

emission Solar
term Atmospheric Term

Emission
Term

where R¢ isthe clear channel IR radiance at frequency v measured by the satellite, T is the
surface skin temperature, T(p) isthe ambient atmospheric temperature a pressure p, Tsun
is the blackbody temperature of the sun (assumed to be 5600K), B,(T) is the Planck
radiance evaluated at frequency v and temperature T, €, is the surface spectral emissivity,
p, is the surface spectral reflectivity, 1, is the spectral transmittance from the earth’s
surface to space, and 1,(p) is the spectral transmittance from pressure p to space. A
reflected downward IR component has been omitted in equation (4.2.24) because of it's
small magnitude when compared with other terms in the equation.

In the microwave(MW) region equation (4.2.24) must be modified for severa
reasons. First, & microwave frequencies the Raleigh-Jeans approximation holds and the
Planck function becomes approximately proportional to temperature. Secondly, the
reflected atmospheric term (ignored in the IR) becomes large and significant whereas the
reflected solar term becomes negligible. Lastly, the surface reflectivity in the microwave is
assumed to be specular and is therefore expressed as one minus the surface emissivity.
Incorporating these modifications, equation (4.2.24) isrecast for microwave channels,

R, =¢Tr1, + I T(P) (p) pt(l-¢ )I T(P)—(p)dp (Microwave)  (4.2.25)
surface
te;r:lilssion Atmospheric Reflected Downward
Emission MW componat

Term

where al terms which appeared previoudy in equation (4.2.24) have the same definition
except for RS which is now in units of brightness temperature, and the new variable,

T,(), is the two path transmittance from pressure p to the surface and back to space.
Notice that dl references to the Planck function have been replaced by T (atmospheric
temperature) and the reflected solar term is replaced by the reflected downward
atmospheric emission term.

The retrieval methodology requires that equations (4.2.24) and (4.2.25) ae
linearized about some a priori estimate. This is accomplished by expressing R:in
equations (4.2.24) and (4.2.25) as a function of the regression guess using a first order
Taylor expansion such that:

N
Ry =Ry +)

Y
kild\/k(\/k k 0)
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where R is the total integrated radiance for frequency v computed from the regression

solution using either equation (4.2.24) or (4.2.25), V, and \V, are the nth elements of the

solution and regression first guess geophysical parameter vectors,(;vﬂis the incremental

k
change of the radiance with respect to a incremental change in a particular geophysical
parameter (eg. V,= temperature a 50 mb), and N is the number of geophysical

parameters. The value of gvﬂis computed in a manner similar to Eyre (1989a) by

k
differentiating the numerical quadrature form of equations (4.2.24) & (4.2.25) with respect
to the geophysical parameters (see section “ Computation of the Kernel Matrix”). Currently
the geophysical parameters solved in the physical retrieval include surface and atmospheric
temperature and moisture. The above equation is re-expressed in matrix notation as,

R=R, +A(V-V,) (4.2.26)

where R represents the vector of clear satellite observations for al retrieval channels, R,
represents the vector of radiances computed from the regression first guess for al retrieval
channels, V and V, represent the solution and regression first guess geophysical parameter
vectors, and A, commonly referred to as the kernel matrix, contains the partial derivatives
of radiance with respect to each of the individual geophysical parameters and for each of
the retrieval channels. A minimum variance solution for V is employed in the retrieval
process of the NOAA Core Algorithm. Minimum Variance has been used in the NOAA
TOVS operationa retrieval system since 1988 (Fleming et. a., 1986; Goldberg €. d.,
1986). There are an infinite number of ambient atmospheric states that will satisfy the
RTE to within the system noise (i.e. instrumental + cloud clearing + transmittance); the
minimum variance solution uses a priori constraints, in the form of aregression estimate
and covariance matrix of regression errors, to produce redistic atmospheric profile
solutions which minimize average squared error over an ensemble. The iterative matrix
form of the solution used is (Rodgers, 1976):

Vo = Vo tAINTA, +5 ) AN YRR, )-A, (v, -V, )} (4.2.27)

wherev ., is the iterative estimate of the true profile of temperature or moisture (to be

retrieved), V. is the retrieved estimate of the true profile of temperature or moisture from
the previous iteration, v, is the initial guess profile of temperature or water vapor mixing
ratio, R is the vector of satellite observed radiances, R, is the corresponding vector of
radiances computed from the most recent iterative solution, A, is the kernel computed
from the most recent iterative solution, N is the instrument noise covariance matrix, and S
isthe estimate of the background error covariance matrix between the truth and the retrieval
estimate. Superscripts T and -1 denote matrix transpose and matrix inversion, respectively.

Temperature/surface temperature and water vapor are retrieved separately rather
than simultaneously with the temperature retrieval preceding the water vapor retrieval. The
temperature profile is retrieved first using channels selected from the 15um and 4.3um
bands that are relatively unaffected by water vapor. By first improving the temperature the
subsequent H20 retrieva, based on the updated temperature information, will be more
accurate because the temperature component of the signa in the water vapor channels will
be better accounted for . Both retrieva steps can be iterated, however experiments with
simulated data have shown that quite often the initial guess departure from the truth isin
the linear regime such that only one iteration is required.
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Expressing the Retrieval Solution in more Computationally Efficient Form
The retrieval solution in equation (4.2.27) can be re-expressed in a more

computationally efficient form using eigenvector methods. Because S in equation (4.2.27)
isareal symmetric matrix it may be written:

S=TAr"” (4.2.28)

where ™ isan [n x n] orthonormal matrix, A isan [n x n] diagona matrix, and superscript
T denotes matrix transpose. Substituting equation (4.2.28) into equation (4.2.27) and
making use of the properties of eigenvectorsit is easy to show that equation (4.2.27) can be
written in the following equivalent form,

AV = r(rTA:N-lAnr +/\'1)_1FTAIN'1{AR 'An(vo _\A/n)} (4.2.29)

The[n x n] matrix [ contains the n orthonormal ‘eigenvectors of S in it's columns and
the diagona matrix A containsthe n ordered ‘eigenvalues of S. More specifically,

; :
D\ 0 0 0 1 y2 yn
S()l A - 0 %} V; yrllg
A= 0: . 2 0 B and M= D:2 :2 :2 0 (4230)
: oi g
i) 0 A0 ¥, V. vy O
Fon =
where [}, T,, ..., ['] ae the n eigenvectors of S and [A,, A,, ... , A] are the

corresponding eigenvalues.

The dimensions of the matrix to be inverted in equation (4.2.29) can be reduced by
truncating the matrices of eigenvectors and eigenvalues. Suppose that we choose to retain
m of the n eigenvectors (m < n) then equation (4.2.29) is rewritten:

AV =F rTAEN-lAnF_wK_l)‘erTAENJ%R_An(VO _{/n} (4.2.31)

whereyisatuning parameter, and the definition of i~ and N areasfollows:

Ly O O 0
A0 ° D Fovi v
y D 1 2 m[|
~ . _n0 oo -~ Oy yr O
yA' =0 A, Oand F=g2 72 ... 724
0 %0 o0 S

y n Vo Yn
0 0 ad ) b
H A H S ™. B

(4.2.32)

Notice that the dimension of the matrix to be inverted in equation (4.2.31) is [m x m]
compared to the larger [n x n] matrix in equation (4.2.29). In addition to reducing the
number of floating point operations, truncating the eigenvectors may aso filter out
unwanted noise in the retrieval process by excluding higher order terms which contain
spurious information.
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Settings for the tuning parameter, y, and the number of eigenvectors retained, m,
are different for water vapor and temperature retrievals. Experimentally determined values
for (y, m) are currently set to (1.5, 30) for temperature, and (20, 20) for water vapor.

Computation of the Kernel matrix

The elements of the A, matrix in Equation (4.2.31) are derived for IR and MW
channels using a quadrature form of equations (4.2.24) and (4.2.25). As discussed, the
elements of A, are derivatives of radiance (brightness temperature for MW) with respect to
individual geophysical parameters (e.g. 50 mb temperature, 500 mb water vapor mixing
ratio, surface temperature) from the most recent iterative solution. We begin by writing
equations (4.2.24) and (4.2.25) in quadrature form using the trapezoidal rule of integration.
For the IR region the quadrature form of equation (4.2.24) is,

T R e a0 Ma it MR

P, BU (Tsun)t o Scose
(4.2.33)
where Jrepresents the number of discrete pressure levels of the fast transmittance mode,
p, isthe pressure at the jth pressure level and dl other quantities are as defined in equatlon

(4 2.24). Similarly for the MW region of the spectrum equation (4.2.25) is expressed in
equivalent quadrature form,

J * *
Rf) =g TTys + 3 %%}'(pj)+T(pj_1)éﬁru(pj_l)—TU(pj)+(1 —SU)(TU(pj) —TU(pj_l))ﬁ
j=1

(4.2.34)

where 1y = 00s) (o) EQuation (4.2.34) can be simplified by using notation for effective

transmittances which combine the upwelling and downwelling MW components of
radiance into asingleterm. The form of the simplified equation is as follows,

I
RZ =T Tys +j§15@r(pj) +T(pj _1)% %U(pj_l) -1, (pj)g (4.2.35)

where 7 indicates the effective transmittance and is defined,

(00 = d-(1-e )P o F H e (42:36)

Taking the derivative of equations (4.2.33) and (4.2.36), both with respect to temperature
and water vapor mixing ratio, givesthe elements of A..

Making the assumption that transmittance is independent of temperature the
temperature elements of A, for IR channels are defined as,
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dB, _
s {2 T —TJ+1} forj =
J
O dB; f _
CdRe EVZF{T“_TM} orl<jy<lJ
An=p =0 J (4.2.37)
T, dB, _
%/Zd_T{TJ-l_Tj} forj =J
0 j
E?s Cﬁs T for surface skin term

where J is the number of atmospheric levels and j = J corresponds to the lowest
atmospheric level, 1, is the atmospheric transmittance from the surface to space, 1, isthe
atmospheric transmittance from the kth atmospheric pressure level to space, €, is the

surface spectral emissivity, and r-is the derivative of the Planck function evaluated a

channel i and atmospheric temperature T,. Similarly for the MW region the definition of
the temperature elements of A, are as follows,

E%{Zf -1, ,+1} forj =
Al = IR dR? %7/2{ T~ J+l} forl<j < J
"dT, E%{f]_l—fj} forj = J

= for surface skin term

(4.2.38)

where the effective transmittance, 7 , is as defined above.

The water vapor elements of the A, matrix for IR channels are defined as follows,

) ¢ + - -B
Al =R _Op 128, 1coso - B BIOL & (B~ B) ATy 5 5
dq; 2 qu] k=1 2 dq;
where B, is the Planck function evaluated for channel i at the temperature of the sun, B,

isthe Planck function evaluated for channel i at the first guesslevel temperature T,, 0 is the
solar zenith angle, p, isthe surface spectra reflectivity for channel i, g, is the initid guess
mixing ratio at level k, and al other terms are as defined in equations (4.2.36) and (4.2.37).
Assuming an isothermal atmosphere above the uppermost pressure level the definition of
the water elementsof A, inthe MW isasfollows,

1
Al =

k 4.2.40
i, Ty 1%; +T1 dq * % _[qu+1 T 1) (4-2.40)

The derivative terms in equation (4.2.40) are evauated using the definition of effective
transmittance from equation (4.2.36),

dTy d 2 ]
- = —(1-&)= 4241

which after some manipulation reduces to the following form,
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A O
L LI S LA LI (4.2.42)
dq; dq; Edqj' Ty dq; g«

The derivative of transmittance with respect to water vapor is given by:

dr, _ . dInt . dInt, du,

k k

(4.2.43)

where u,, the precipitable water from the space to pressure level k, is caculated by the
following formula

k
uk = /1{8 Z(qn +qn—1)ﬁ)n _pn—l) (4244)
n=l
the derivative of precipitable water is given by,

gl/zg(pm ~pji)forj < k
D1 /2g)(pj - pj_l) forj=k (4.2.45)
forj > k

k —

and the derivative of the natural log of transmittance with respect to precipitable water is,

dint In(t, ) —In(T
g It ) 7o) (4.2.46)
duk Uk -1 — Uk

[Note: 1,=1inthe calculation of the above derivatives]

The Instrument Noise Covariance Matrix N

The instrument noise covariance matrix, N, is a diagonal matrix whose non-zero
elements ( the diagona elements) represent the variance of the instrument noise for each of
theretrieval channels. Thus N is defined as.

R
g0 o3 - 0f
n=g0 % 0 E (4.2.47)
0 A
50 0 0 olf

The diagonal values, [g},03,---,02], represent the noise of the n retrieval channels, and

al off diagona elements (i.e. dl interchannel covariances) are assumed to be zero.
Operationally N will include the total system noise and may include off diagona elements.
The total system noise for each channd is due to the combined effects of measurement
noise, forward model inaccuracies, and calibration error.

Ver 1.7 52 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document
The Thermal and Moisture Covariance Matrix S

The retrieval parameter covariance matrix, denoted by S in the previous
mathematical description of the physical retrieval, should represent the expected error of the
background field. As discussed in the First Guess Section, NOAA/NESDIS generates a
background field from a regression scheme which uses a large training data base to
estimate geophysical quantities from principal components derived from AIRS/AMSU
brightness temperature observations. This same training data is used to estimate the
magnitude of expected background errors when the regression coefficients are applied to
independent data. The coefficients, matrix C from equation (4.2.22), are applied back onto
the dependent training data as follows:

AV = CAT (4.2.48)

where AV is the regression retrieval of the dependent geophysical training data Av in
equation (4.2.20). The covariance matrix, S, isthen calculated as follows:

S=LEET, where E = AV-AV (4.2.49)

m

where Sisan [n x n] matrix whose diagonal el ements represent the expected background
variance of each of the predictants, and whose off diagona elements represent expected
interlevel covariances amongst the various predictants.

4.3 Final Product - (Susskind lead, Chahine)
I ntroduction

To satisfy the science requirements of EOS, a find adjustment is made to the
NOAA first product based on the difference between caculated radiances and cloud-
cleared radiances. It is also in this part of the code that the cloud parameters, and the
research products (not described in this document) will be calculated.

When solving for a set of geophysical parameters, it is desrable to be able to
choose an appropriate set of parameters to solve for and select channels that are both
sengitive to those parameters and relatively insensitive to other parameters. In generd,
channels will be affected by more than one type of parameter. For example, channels with
radiances sensitive to the water vapor or ozone distribution are also sensitive to the
temperature profile and often to the surface skin temperature. Our approach is to solve
sequentially for the surface parameters, temperature profile, water vapor profile, and ozone
profile in that order. In this approach, variables aready solved for, used in conjunction
with first guess variables, are kept fixed when solving for the next set of variables. Table
4.3.1 lists the variables solved for and the number of channels used in each step. The
above order is chosen because channels can be selected for a given step that are relatively
insensitive to variables to be solved for subsequently.

A total of 222 AIRS channels, 12 AMSU A channels, and 4 HSB channels were
sdlected for use in the AIRS/AMSU retrieva agorithm. Some of the surface parameter
sounding channels are also used in the water vapor or temperature profile retrievals.
Therefore, the total number of channels is less than the sum of the channels in column 2.
Likewise, the water vapor solved for in the ground temperature retrieval is subsequently
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updated in the water vapor profile retrieva step. Therefore, the 238 channels are used to
solve for 39 different variables.

The general AIRS/AMSU retrieva agorithm does not require any field-of-view to
be cloud free (Susskind et al., 1996). The algorithm used in AIRS retrieval consists of the
following main steps. (0) Obtain an initia guess for the temperature, moisture, and ozone
profiles. (1) Derive a first estimate of the cloud cleared radiances and channel noise
covariance matrix. (2) Retrieve surface parameters. If necessary, the first guess and cloud
cleared radiances may beimproved at this point and the surface retrieval may be repeated.
Thisloop ends the basic startup procedure. (3) Retrieve temperature profile. (4) Retrieve
water vapor profile. (5) Retrieve ozone profile. (6) Produce fina cloud cleared radiance
estimates. Repeat (2) - (5) starting with the new parameter estimates in place of the first
guess. The general approach to solve for the parametersin steps (2) - (5) is in the form of
iterative constrained least squares solutions, one for each set of variables to be solved for.
The form of the equations to be solved isidentical for each of the four steps.

Treatment of radiances in cloudy atmospheres

Three basic approaches used for accounting for effects of clouds in satellite remote
sensing are. 1) identify clear areas and only perform retrievals in those areas, with no
cloud correction needed; 2) use channel observations in adjacent potentially partially cloudy
scenes to reconstruct what the channel radiances would have been if the scenes were clesr,
and use these reconstructed observations to determine geophysical parameters, and 3)
determine both surface and atmospheric geophysical parameters, as well as cloud
properties, from the radiance observations themselves. An example of the first approach is
given by Cuomo et al.(1993). Eyre (1989a, 1990) has used the third approach in
simulation by assuming an unknown homogeneous amount of black clouds a an
unknown
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Variables Channels Frequencies
Ground Temperature Retrieval
Tg, AW, 8 spectral emissivity 21 758 - 1235 cm-1
function, 3 spectral bi-directional 27 2170 _ 2669 cm-l

reflectance functions

Temperature Profile Retrieval

13 layer temperature- 96 651 — 742 cm~1

functions (trapezoids) 29 2228 _, 2501 cm-1
12 50.3 - 57.29 GHz

Water Vapor Profile Retrieval

8 layer column density functions 30 790 - 2650 cm~1

4 150-183.31 GHz
Ozone Profile Retrieval

5 layer column density functions 23 1001 - 1069 cm-1
AMSU Temperature Profile Retrieval

Ts, €m, 13 layer temperature profile 17 666 cm-1- 676 cm~1

functions 12 50.3 - 57.29 GHz

Total: 39 variables 238 channels (AIRS + AMSU)
TaBLE 4.3.1. VARIABLESAND CHANNELS

pressure, and attempted it with real TOVS dataas well (Eyre, 1989b). Our approach, like
that used in Susskind (1993), is of the second type and is an extension of that used by
Smith (1968), Chahine (1974), and Chahine (1977). This approach utilizes saellite
observed radiances, Ry, corresponding to channel i and field-of-view k, made over

adjacent fields-of-view. In this approach, there is no need to model the radiative and
reflective properties of the clouds. The only assumption made is that the fields-of-view are
homogeneous except for the amount of cloud cover in K different cloud formations in each
field-of-view. R, the radiance which would be observed if the entire field of view were

i,clr

clear and R;|q /, the radiance which would be observed if the entire field of view were

covered by cloud formation ¢, are therefore assumed to have the same respective values in
each field-of-view. If the observed radiances in each field-of-view are different, the
differences in the observed radiances are then attributed to the differences in a, the

fractional cloudiness for cloud formation ¢ in field-of-view k.

Using the above assumptions, Chahine (1977) showed that the reconstructed clear-
column radiance for channdl i, Iii,CLR, can be written as a linear combination of the
measured radiancesin the K+1 fields-of-view, R; ; .. R; k1, acording to

A

RiclR = Riz + [_R,l—l_?ml] MEERR % [T?,l—_R,(mz)-k] oot FIK[_R,l—_R,z]

(4.3.1)
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where n;  ng are unknown channel independent constants, and K+1 fields-of-view

(FOV's) are needed to solve for K cloud formations. The fields-of-view are ordered such
that FOV 1 isthe clearest field-of-view based on observations in the 11 pm window (the

field-of-view with the highest 11 ym radiancesis assumed to be FOV 1) and FOV K+1 is
the cloudiest. Thus n; multiplies the largest radiance differences and ny the smallest.
Once n; ng aredetermined, Eq. 4.3. is used to produce the reconstructed clear column

radiances for al channels used in the retrieval process. The reconstructed clear column
radiances are then used when solving for the geophysical parameters. Susskind et al.
(1984), Susskind and Reuter (1985a) and Chahine and Susskind (1989) have successfully
used this approach with two fields-of-view, assuming one cloud formation, in the anaysis
of HIRS2/MSU operational sounding data. Chahine and Susskind (1989) show that
retrieval accuracy, verified by co-located radiosondes, does not degrade appreciably with
increasing cloud cover, for retrieved cloud fractions of up to 80%. An anaogous
assumption is made by NOAA/NESDIS in production of their clear column radiances
used in generation of operationa HIRS2/MSU retrievals (McMillin and Dean, 1982).
Susskind and Reuter (1985b) have performed simulations with two cloud formations and
three fields-of-view for the AMTS instrument -- an earlier version of AIRS (Chahine, et
al.., 1984), used in conjunction with MSU. We have developed a new methodology to
account for multiple cloud formations using the AIRS and AMSU instruments. The
methodology to determine ny is first presented for a single cloud formation and then

generalized for use with multiple cloud formations.

Single cloud formation with two fields-of-view

For one cloud formation and two fields-of-view, the reconstructed clear-column
radiance for channel i from Eq. 4.3.1 isgiven by

Riclr =R+ M [ﬁi,l - ﬁi,z] : (4.3.2)

Given the above mentioned assumptions, the value of n; is independent of cloud spectral
properties and has the same value for al channels. n; can be written in terms of a4 and
o, and has a unique value given by

Oy
0(2 - Gl , (433)

where a; and o, arethecloud fractions in each field-of-view (Chahine, 1974). It is not
necessary to know o, or o, to determine n;.

N1 =

The determination of n is sequential and is done in a number of passes based on
the latest estimate of the surface and atmospheric parameters. An expected vaue of
Ri cLr for any channel can be used to estimate n according to

= Ricir ~Ru '_ﬁiil, (4.3.4)
Rii—Ri2

where n;, is the nth pass estimate of n, obtained from channdl i, based on the nth pass

estimate of the clear column radiance Rl g. RicLR is obtained by using the radiative

transfer equation to compute the channe i radiance with the nth pass estimates of
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atmospheric and surface parameters. The general multi-pass procedure referred to by n
will be discussed later.

If the estimate of temperature profile is too warm (cold) over coarse layers of the
atmosphere, the estimated clear column radiances R{‘CLR will be too high (low), and r]{‘,l
will be too large (small). In performing HIRS2/MSU retrievals, Susskind et al. (1984)
correct potential biases in nth iterative coarse layer temperatures by adjusting computed
brightness temperatures for the IR channels used to estimate n according to the difference
between the observed brightness temperature for an MSU channel sensitive to mid-lower
tropospheric temperatures and that computed from the nth iterative temperature profile.

This in effect adjusts the nth jterative temperature profile to be consistent with the
observationsin asingle MSU channel.

We can utilize the superior sounding capability of AMSU, compared with MSU, to
first produce an AMSU only retrieval of atmospheric temperature-moisture profile for use
astheinitial guess to start the retrieval process, and use in the first pass estimation of n,.
The AMSU retrieval can be done before the cloud correction because AMSU radiances are
not significantly affected by non-precipitating clouds. The temperature retrieval obtained
from AMSU will have the property that radiances computed from it agree well with al
AMSU channels and should not be very biased over coarse layers of the atmosphere,
though loca errors will ill exist.  Alternatively, we can use the regression guess of
NOAA'’s physical retrieval or the NOAA first product retrieval itself for this purpose.
These profiles will also be unbiased, aslong as the NOAA cloud clearing step, described in
section 4.2, is sufficiently accurate.

Using different IR channelsin Eq. 4.3.4 will result in different estimated values of
n;1 as aresult of a combination of loca errors in the temperature profile, and channel

noise effects. Many channels can be used to estimate n, in order to reduce potentia errors.
For the case of a single cloud formation, this can be accomplished by smply taking a

weighted average of n; ; over aset of cloud filtering channelsto get a single value of n, as

done in Susskind and Reuter (1985a) and Susskind et al.. (1993). Once avalue of n, is
computed, the clear-column radiances for all channels can be reconstructed using Eqg. 4.3.2.

If the denominator in Eq. 4.3.4 issmall, errors in estimating the numerator will be
amplified in the determination of n. Therefore, it is important that cloud filtering channels
have alarge contrast in radiance between the two fields-of-view. This implies the channels
should be sensitive to the presence of clouds. The contrast can be further enhanced by
averaging together observations in the warmest spots and averaging observations in the
coldest spots within a scene to produce two high contrast fields-of-view as done by Reuter
et al. (1988). Averaging spots also reduces the effects of instrumental noise. The
methodology for selecting and weighting channels used to determine n is described in the
next section.

Channel selection for cloud filtering

Chahine (1974) showed that 15 um channels are preferable for use in the
determination of n compared to 4.3 um channels, because the error in FAQLCLR, caused by
an error in the estimated temperature profile, will result in a smaler eror in n as
determined from Eq. 4.3.4. This analysis is a result of the properties of the blackbody

function in the two spectra regions. Moreover, Chahine (1974) and Halem et al. (1978)
show that if one has infra-red observations in both the 15 ym and 4.3 um temperature
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sounding bands, but no microwave observations, soundings can be done in cloudy
conditions if n is determined using observations in 15 pm channels and the temperature
sounding channels for the mid-lower troposphere come from the 4.3 um region. Along
the lines of Chahine (1974), we initialy selected channelsin the 15 um band that sound the
mid-lower troposphere for cloud filtering. These channels were selected to be between
absorption lines so as to produce sharp weighting functions that would have less of an
upper tropospheric and stratospheric contribution in order to maximize sensitivity to the
clouds. We aso avoided channels contaminated by water vapor and ozone absorption, that

could cause errors in R, ~ - This same channel selection methodology was used in
Susskind et al. (1993).

Therationale for use of only 15 um channels for cloud filtering neglected the effects
of solar radiation reflected off clouds. When sunlight is reflected off the surface and
clouds, the scene can exhibit more contrast in the 4.3 um region, especially for low clouds.
In addition, cloud effects on radiances can be of opposite sign a short wavelengths than a
long wavelengths. This change in sign makes it easier to distinguish cloud effects on the
radiances from thermal effects of the clear atmosphere. Therefore, it is desirable to include
4.3 um channelsin the cloud filtering set during the day. We fed that it is desirable to use
the same methodology for both cloud filtering and retrieval of geophysica parameters
during the day and night. We therefore use both 15 ym and 4.3 um channelsin the channel
set used to estimate n. The 15 pym and 4.3 um cloud filtering channels are a subset of the
channels used to determine the atmospheric temperature profile. Window channels are
more sengitive to clouds than atmospheric sounding channels, but are also more sensitive
to uncertainties in surface parameters. We have developed improved methodology to
include window channelsin the determination of n, with a weight that properly reflects the
uncertainty in their clear column radiances. An analogous weighting procedure is done for
dl channels. The relative weighting of the 15 pym and 4.3 um channels in the
determination of n is done objectively and will differ under daytime and nighttime
conditions as described later.

Determination of n for a single cloud formation

The method we use to determine n is analogous to that used by Susskind et al.
(1993), who set

|
ZWiz n;
n =+——>, (4.3.5)
W.
iZ i

where W, isaweight for channel i. An appropriate value of W, should take into account
propagated errors in n; resulting from instrumental and computational noise. For

example, channels more sensitive to clouds, with large values of | R;; - R;, |, should
receive larger weight.

One can write Eq. 4.3.4 in the form of | equations, one for each channel 1, in matrix
form

W (RgLR - ﬁl) =W (R,-Rp) n", (4.3.6)
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where W is an | x | diagonal weight matrix with weight W for channel i,

(R%LR - ﬁl) and (ﬁl - ﬁz) are | x 1 vectors, and n" is the unknown. The standard
weighted |east squares solution to this matrix problem is given by

, -1 ,
0" = @ﬁl ~Ry) W w (R - ﬁz)é (Ri-R,) ww (RELR - ﬁl) (4.3.7)

and reducesto

5 WP (ﬁi,l_ﬁi,Z)(RnCLR,i_Ri,l) 5 WP (ﬁi,l_ﬁi,z)z n'
= A = (4.3.8)
5 W¢ (Ri,l_Ri,Z) %Wi (Ri,l‘Ri,z)

where n;' isgiven by Eq. 4.3.4. Eq. 4.3.8is analogous to Eq. 4.3.5, but in Eq. 4.3.8, the
contribution of the difference of radiances in the two fields-of-view to the channel weight is
explicitly taken into account. Therefore W, in this context represents any residua weight
factors we may want to add, such as effects of channel noise. Susskind et al. (1993) used

Eg. 4.3.6, including in W, the term éi,l_eizz’ that is roughly proportional to

Ri1~Ri> ? for the 15 pm channels they used.

The above discussion is accurate as long as sources of channd noise ae
uncorrelated from channel to channel. Under these conditions, an appropriate value of W,
should be inversely proportional to sources of noise. There are two sources of noisein Eq.
4.3.6, instrumental noise and computational noise. Instrumental noise is random and

affects R;; and R;,. Computational noise affects R{lc g and will be correlated from
channd to channdl. In the case of channel correlated noise, the appropriate equation is
given by

: -1 ,
n" = gﬁl - ﬁ2) N~ (ﬁl - ﬁ2) E (ﬁl - ﬁ2) N_l(RréLR - ﬁ1)’ (4.39)

where N isthe channel noise covariance matrix, indicating errorsin (R”CLR - ﬁl).

The iterative methodology to determine clear column radiances consists of three
passes to determine n" (n=1,2,3), using three sets of conditions, to give R'yy , in which
R'o.r @ndhence n" become increasingly more accurate in each iteration. Each pass has

its own N", reflecting expected errors in R’z - R;;. We currently model the noise
covariance matrices as diagonal according to

f
N" = NEAN? + %BATS"D + ?ﬁmﬁ + ?ﬂﬂp?g s AT(|0)"§ *
PT "B P& 0O Mo 0O DT
(4.3.10)
0 0R,
—Aq(p)"/q
B/ g ]
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where NEAN, is the channel i instrumental noise and the remaining terms are contributions
to errors in the computed value of R, resulting from errors in estimated parameters.

The partia derivatives are computed empiricaly. The profile terms are obtained by either
shifting the entire temperature profile by a constant amount or multiplying the moisture
profile by a constant percent change. The uncertainties, such asAT,", are specified so as to
be indicative of the expected errorsfor that parameter in each pass.

Cloud filtering channels which do not see the clouds appreciably for a given scene
are not included in the determination of . Channd i is excluded from the set used to

determine n if ‘ Ri1- ﬁi,z‘ <32 NEAN;. If we have situations where there are not a

least 2 useful cloud filtering channels, the scenes have little or no contrast. Under these
conditions, we assume both fields-of-view to be clear and set n=-1/2. This has the
effect of setting the clear column channel radiances to the average of the observed radiances
in both fields-of-view. The other possibility for very little contrast is that both scenes have
essentially identical, but non-zero, cloud cover, such asfull overcast. In such acaseg, if we
treat the scene as clear, we will find a mismatch between the AMSU observations,
unaffected by clouds, and the AIRS observations, that are cloud contaminated. The final
result will be rejection of the profile in the retrieval step as non-convergent in a manner to
be described later. The constant cloud cover case can aso be detected and rejected by

comparison R¢| g with R;. Simulations show that cloudy low contrast scenes can be
identified and rejected if

K (RP'CLR —§,1)2 . (4.3.12)

[P

Reection criteria are described in more detail in section 7.2.

Multiple Cloud Formations with Multiple Fields-of-view

In order to solve for K cloud formations with unknowns nj ... Nk, K+1 fields-of-
view are needed. A simple relationship between o, and ny does not exist for the case of
multiple cloud formations, nor isthe solution n; ... Nk necessarily unique. For example,
consider a case of only one cloud formation with cloud fractions of 20%, 40%, and 60% in
fields-of-view 1 - 3 respectively. r]gl) =1, r](zl) =0 and ngz) =0, r](22) =.5 ae two
examples of solutions to the problem, as are appropriate linear combinations of these
solutions, given by

0

M0 [h(l) O [h(Z)
= (1-f) L+ f ot
Hh,H -f) En(zl)BJ’ 51(22)5 (4.3.12)

The optima solution should provide the correct clear column radiances and do so
with the smallest values of n in order to minimize amplification of instrumental noise
when used in Eq. 4.3.1.

The methodology to determine an optimal set of n isanaogousto that for asingle
cloud formation. If oneusesaset of | channelsto estimate K values of n, Eg. 4.3.1 may
be expressed as a set of linear equations in matrix form according to
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DR].,CLR R:Ll 0 Eﬁll - @K+l Ell - §1K e ﬁl - ﬁlz gl]ng_] =
822 CLR - Roaf _ %2,1‘ Rk +1 R2,1‘ Rok - Rop- RZZDE[]z EK43 13)
g : - : DO:

ERI,CLR_RIJE Hﬁl,l_ﬁl,Kﬂ Ri-Rk - Ra ﬁlZHBWK

or
Ch=Dn" , (4.3.14)
The solution to Eq. 4.3.14 isgiven by
" =(D'NID ) D NLCn (4.3.15)

where N isthe channel noise covariance matrix as given in Eq 4.3.10. Givenn" I:{clr IS

constructed for al channels according to Eq 4.3.1. I%ffc,r are used as the observations in the

generd retrieval process. If the observation in a channel is not sensitive to the presence of
cloudsinthefield of view, it is better to average the observationsin all fields of view

R LR 4316
iclr _K—*leél ik - (4.3.16)
This is equivaent to defining separate values of n for channels that do not see

clouds, n{‘dr = _Ki+1 , and using them to produce Ii{‘dr for the appropriate channels.
Currently, channe i is consdered not to be senstive to clouds if

Ri1- Ri,kﬂ‘ <342 NEAN; and it is included in a set of channels expected not to see
clouds given the retrieved cloud height.

Stepsin the AIRS Final Product Processing System

The AIRS final product processing system is comprised of a number of sequential
steps listed below.

1. Obtain an initial guess which agreeswith AMSU A and HSB radiances.

2. Determine aninitial n, n3 from equation 4.3.15 using the initial guess parameters.
Also produce the retrieval noise covariance N* as described later.

3. Do adtart up surface parameter retrieval using f%il obtained from equation 4.3.1.
All channels used in this step are sensitive to clouds, so there is no need for a cloud
height retrieval.

4, Produce an improved AMSU A temperature profile retrieval, using the retrieved
vdueT%, and radiancesin AMSU A channels and a set of AIRS stratospheric

sounding channels which never see clouds.
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5. Determine updated n% , n% taking advantage of the refined parameters. Also
determine cloud parameters to decide which channels do not see clouds. This

information is used to produce If%i2 aswell astheretrieval channel noise covariance

matrix N2. Thisisthe end of start up system.

6-9 Use fiiz and N? to refine the surface parameters, temperature profile, humidity

profile, and ozone profile. These steps give the first pass retrieved parameters.

10. Using the first pass retrieved parameters, determine refined n:f : n% and final

cloud parameters.

11. Produce the final clear column radiances ﬁ? , which isa product of the system,
and N3.

12. Repeat steps 6-9 using f%i?’ and N to obtain the final products, using the first

pass parameters asthe initial guess.

General Iterative Least Squares Solution

Because the radiative transfer equation is nonlinear, an iterative approach is used to
linearize it about the nth iterative parameters X?*l. Theiterative retrieval process described
hereis different from the use of different passesin the determination of 1. The vaues of

|§‘1’,c|r used in the iterative retrieval loop are held fixed in a given pass. The n+1th iterative
estimate of X, isexpanded according to

J
XM= X7 +ZF”J' AAT = X7 +
<

J
n
F Al
j S|

(4.3.17)

J
where the columns of F represent a set of functions, X{ is the initia guess, and Aj” are
corresponding coefficients given by

n_n-1 n

which together with X9 determine the solution. A solution is found that attempts to
minimize the residuals A®]", weighted inversely with respect to expected noise levels, for

the channels used to determine A;. Theresidual for channel i is given by
AP =6,-0, (4.3.19)

where (:)i is the observed (clear column) brightness temperature and ©;' isthe brightness

temperature computed from the nth iterative parameters. The nth iteration residual for
channdl i is attributed to errorsin the coefficients, 6AJ-“, and to noise effects, i.e.,
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n_ n n_, ~
NG = ZS,— OA[] +0O; , (4.3.20)
]

where §;; isan element of the sensitivity matrix or Jacobian given by

S”=66P 4321
= oan (4:3.21)

and the noise factor C:)i for a given case has two parts. errors in observed clear column
radiances ééi, which are affected by instrumental noise and cloud clearing errors, and

computational noise 30F .

In our simulations, we assume perfect knowledge of physics, i.e., if we know all of
the variables exactly, we can compute exact noise free radiances. Nevertheless, the
transmittances depend on the variables to be solved for. Therefore, computational noise
exists. Computational noise, arising from errors such as too low (high) an estimate of
aimospheric water vapor, will produce noise that is correlated between channels.
Instrumental noise is uncorrelated from channel to channel but cloud cleared errors are
correlated from channel to channel. Each retrieval step uses an appropriate noise covariance
matrix

N =N + N (4.3.22)

with values which depend on the pass. We further define W as N7L
A general form of the solution to this problem is given by
-1 4.3.2
AAT =|STW ST +HY s wae" =M"Ae", (4323)

where AA" and A@"are column vectors of the updates to the coefficients and of the
residuals, respectively, and H" is astabilizing or damping matrix.

If the noise covariance matrix N were diagona, with values N; =02, W" would be
diagonal with values W;; = ©; 2 Under these conditions, one can define a channel weight

W, as Wijij 2 = c 1 with correlated noise, W" contains off diagonal matrix elements.

One can till think of an effective channed weight that decreases with increasing channel
noise

., (4.3.24)
W, =[wwi4 = %Wﬁ,% .

For optimal determination of the solution vector AA", an accurate trestment of N, and
hence W, is needed. The treatment of N will be discussed later. The matrix S'W S in
Eq. 4.3.23 can be thought of as an information content matrix, proportional to the square of
the sengtivity of brightness temperatures to changes in parameters and inversely
proportional to the square of the noise estimates of the channels.

Hanel et al. (1992) and Rodgers (1976) have reviewed severa methods of
congtraining the ill-conditioned inverse problem. In the minimum variance approach
(Rodgers, 1976), H is taken to be the inverse of the a priori error covariance. If the
statistics of both the measurement and a priori are Gaussian, the maximum likelihood
solution is obtained. If the a priori covariance is taken to be H =vyl, the maximum
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entropy solution is obtained. Other forms of H include the first or second derivative
formulations (Twomey, 1963) that force a smoothness constraint on the solution. The
solution can also be constrained by the relaxation method (Chahine, 1968) and by the
Backus and Gilbert (1970) method.

The minimum variance and maximum likelihood solutions are often considered to
be "optimal." However, if the a priori error covariance is not known or estimated
incorrectly, the solution will be sub-optimal. If thea priori errors are underestimated, the
solution could be overconstrained. This could potentiadly create biases in the retrievals.
The biases may mask small trends in the retrieved data that one may be trying to extract.
The approach described here attempts to keep the effects of instrument noise at a tolerable
level without assumptions regarding thea priori data error covariance.

Transformation of Variables

As aconseguence of stabilizing the potentially ill-conditioned solution, the addition
of H may also have the effect of damping the information content (reducing AA for dl
modes). We transform variables to apply a constraint such that the well-determined
components of the variables are solved for without appreciable damping. If we had
originally chosen a different set of functions which were linear combinations of original
functions, i.e.,

G=FU , (4.3.25)
where U isaunitary transformation (UU' = 1), and expanded the solution in the same way
asin Eq. 4.3.17 with unknowns AB", we would have obtained in matrix form

XM =X"+ GAB" = X" + FUAB" = X" + FAA" . (4.3.26)

The objectiveisto find a transformation matrix U with desirable properties. In the
new basis set, the transformed Jacobian is given by

n _ ae —_cn
T oY (4.3.27)

The constrained solution, as given by Eq. 4.3.23, in terms of this new set of
functionsis given by

-1
ABN = (T'n W T+ H) -I-'n W (A@n — aen—l) =UAA" . (4328)

The term 30" 2, that has been included in Eq. 4.3.28, is an iterative background
correction term that is zero in the first iteration and will be discussed later. U" can be
sdected such that T'"W"T"=U'SWSU is diagond with red non-negative
eigenvalues )\rj‘. The inverse of each eigenvalue is the variance in that eigenmode. The

total varianceisthe trace of the (SWS) ™ or, equivalently, the trace of (U'S'WSU) ™. The
unconstrained solution (H=0), with no background correction (6@”'1 = O), is then given
by

L N (4.3.29)
AB(0) = ()\fj‘) > TH W, ; 86f = ()\”)j m} 20",
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where mj” is the vector corresponding to the jth row of T'W. In generd, the ill-
conditionedness arises from those components of G having low information content and
small eigenvalues (high variance), indicating that those components cannot be well
determined from the observations alone and need damping. Components with large
eigenvaues may be quite well determined and require little or no damping to achieve a

stable solution. If we choose H to be diagonal with values AA, the constrained solution
with no background correction term is given by

A8 (AN7) = (A7 + aN7) " mi pe". (4330)

The coefficients AB] (A)\rj‘) are damped from the unconstrained coefficients
AB! (0) by

n
Aj

BT (AN}) = pvy

AB]' (0) = @] B} (0) | (4.331)

where @; can be thought of asafilter or damping function. This formulation is the same
as the maximum entropy solution, applied in transformed space, if A\ is set equa to a
constant. However, instead of using a single constant for every A\, we compute a

different value for each eigenfunction. For well determined eigenmodes, A isset equal to
0, giving no weight to the a priori. For modes that are not well determined by the
measurements, A is determined in such away as to limit the propagation of instrument

noise to a pre-specified amount. The determination of A)\rj‘ isdiscussed in detail in the next
section.

Application of a Constraint

The residual A®{' can be thought of as having both a signa and a noise
component, i.e.,

AO" = peSI + O, . (4.3.32)

The component of AB; that arises from the propagation of channel noise, éi, is
given by

~ -1 ~
887 () = (X7 + ) [T'“ W] & . (4.3.33)
A statistical estimate of Aé}‘ over an ensemble of profiles can be obtained by

2 ]
o Dhan ar e (N]) (4:3.39
ABD = Exs” ABD J - ()\rj‘ + ANJ-‘) [T' wo o w T],_ =

5 SR R
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because @@ =N =W™L This formulation of AB is similar to that given by Rodgers
(1990). If AN were zero, Aéjn can become largeif A} issmall. AN} can be selected such
that Aé? will be less than or equal to athreshold value. If we alow Aé? to be no more

- N? = BByax A
than AByax, We can set AA; = 0 if Aj2ABZy and set Ahj=— ABuax
otherwise. For example, if AByax = 0.5, A)\j =0 for )\j >4, and if AByax =1, A)\j =
0 for A; =1, corresponding to less damping. Constraints are only gpplied to those
eigenfunctions with lower information content than the critica vaue corresponding to
ABypax . Thevaue of AByaxWwas determined empirically for each type of retrieval being
done. The AMSU temperature retrieval step behaved best with AB,,,, =1.0, the AIRS
surface temperature retrieval step with avalue of AB,,,, = 0.35, the AIRS temperature and
moisture profile retrieval stepswith AByax =175 and 130, respectively, and the ozone
profileretrieval with AByax =15. The computation of al matrix elements shown above,
including A and A\, isdone in each iteration.

Formulation of the background term

The need for an iterative process arises because the radiative transfer equation is not

linear. In every iteration, we recompute @', as well as S",U" and A". If the solutions
were completely linear, and we applied no damping, then

20"0) =6 - "Y(0) DA™ - S" U" AB"(0) (4.3.35)
and AB"**(0) would be determined to be zero because AB"(0) would have already
minimized the residuals.

Eg. 4.3.35 is not exact, both because @”+1(o) iIs not given exactly by
©" +S"U"AB", and because ABj' # AB]' (0). As aresult of applying AB]' rather than
AB;'(0), which would have minimized the radiance residuals, we obtain

A" = A0™H(0) + S"U" [4B"(0) - 4B"| = 20" (0) +30" . (4.336)

In Eq. 4.3.36, A@""}(0) represents the portion of A@"*! that is due to effects of

non-linearity on the solution, while 30" represents the residual portion of A®@"*! due to
the effects of damping in iteration n. The second term is zero for undamped modes and
increasesin significance with increased damping. This term is also zero for al modes in
the first iteration. We only want to include the effects of non-linearity in the iterative

procedure used in the determination of AB". Therefore, the background term to be used in
Eq. 4.3.28 isgiven by

50" =S U" [4B" (0) - 4B"]

and we solve for ABEH1 according to
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AB?H - ()\r}ﬂ +A)\r}+1)_1 U,n+1 S:n+1 Wn+1[Aen+1 _6en]

= 0" A (0) - (N + ) U 8™ W S'UP(887(0) - 48] )
(4.3.37)

where ABJn is the value of AB; which was gpplied in iteration n. Inclusion of the

background term in EqQ. 4.3.37 insures second order convergence along the lines discussed
by Rodgers (1976) with regard to treatment of the a priori term. The next section defines
the criteria used to terminate the iterative process.

Convergence Criteria

In solving Eq. 4.3.37, we are attempting to find solutions to the radiative transfer
equations which minimize weighted residuals of observed and computed brightness
temperatures, corrected for the background term. To test convergence of the solution, we
monitor the weighted residual

. /2
R= E(AO ~30) V'V (0O - 5@)5 (4.3.38)
where the weight matrix V accounts for noise effects on the channel residuals, as well as
the relative information content of the channels with regard to the variables being solved
for. For example, if achannel (or linear combination of channels) carries little information
content in terms of signal to noise, it should be given little weight in the estimation of the
residual in Eq. 4.3.38. An appropriate choice of V, expressing the information content of
the channels, would therefore be

v=(n+an) (T w) (43.39)

in which case we obtain

R=[aB 8B]Y? (4.3.40)

Ver 1.7 67 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document

As shown in Eq 4.3.40, a reasonable way to determine if the solution has
converged, in terms of weighted residuals of observed minus computed brightness
temperatures, isto seeif the solution has converged in terms of the iterative changes in the

solutionitself. Initialy, we set AB; =0 if cb]l <0.05, that is, coefficients of very heavily
damped components with little information content are not believed at all. The solution is
said to have converged when the RM S value of ABJ-” islessthan 10% of the RM S value of

AB" for all components not set equal to zero. The iterative procedure is also terminated if
the RMS value of AB]n is not less than 75% of AB}"1 for the non-zero components. This
indicates the solution is not converging rapidly enough and may be responding primarily to
unmodeled noise. The iterative procedure, which usually converges by 3 iterations, is

carried out analogoudly for al retrieval steps. The detailed application of the constrained
least squares formalism will be described in the next section for each retrieval step.

Theretrieval noise covariance matrix

The retrieval noise covariancematrix N to beused in Eq. 4.3.23 (as W =N} is
given by a sum of two terms

N =N +N° (4.3.41)

where N represents the error covariance in the reconstructed clear column brightness

temperatures and N¢ represents the error covariance in the brightness temperatures
computed from the estimated profile, as a results of errors in parameters assumed known
(being held fixed) in aretrieva step.

Clear column brightness temperature error covariance matrix N

Errors represented in N arise from both instrumental noise and errors in Nk -
Under cloudy conditions, the computation of the reconstructed clear-column radiances
using Eq. 4.3.1 has the effect of amplifying observational (but not computational) noise. |If
the channdl instrument noise has a normal distribution with a standard deviation NEAN;,
and the channel random noise in the K+1 fields-of-view is uncorrelated, the random noise
in the reconstructed clear column radiances has a standard deviation NEAN{®" in radiance
units given by

o kK o «
NEAN;™ = NEAN; \/Ei1+ anE + 5 g =NEAN; A(ni) (4.3.42)
k=1 k=1

where A(nk) is the noise amplification factor. The noise amplification factor can be
considerable. Even for asingle cloud formation, A (n,) is /5 for ny =1 and V13 for

N, =2 . If itisdetermined that achannel does not see the clouds, we set ny = —% for

dl kand A(ny) = @ for that channel.

Ver 1.7 68 18 Sept 1997



AIRS Team Level 2 Algorithm Theoretical Basis Document
Errors in the values of n, add an additional source of noise to the reconstructed
clear-column radiances. However, unlike the amplification of instrumental noise that is
uncorrelated from channel to channel, errors in n, aso result in channel correlated errors
in reconstructed clear-column channel radiances. For example, if n, is estimated too high
(low), it will have the effect of making a correlated radiance error for dl channels, with a
relative magnitude proportional to R; ; = R; 42— . This source of error will contribute to

both diagona and off-diagonal terms in the noise covariance matrix.

If we assume all sources of observational errorsto be uncorrelated, we can estimate
the diagonal contribution of observational noise to the noise covariance matrix according to

NEAN; = \/(NEAN{""”)Z + k%(ﬂnk [Riz- ﬁi,+<+2-k])2 , (4.3.43)
=1

where An, is the estimated error in n,. The diagona contribution of estimated

measurement error to the clear column brightness temperature noise covariance matrix Nii,
isgiven by

) s (4.3.44)
R = 280 NEaND |
oT D(:)i E

where dB; /0T is evaluated at the reconstructed clear-column brightness temperature (:)i .
Multiplication by this factor is necessary to change form radiance units to brightness
temperature units.

Allowing for correlated errorsin n, and n,., itis more appropriate to write

NEAN; = J(NEAN{""”)2 +[ARANAN'AR']. (4.3.45)

where AR, =Ri1-Rik+2-k and (AnAn'),,. istheerror covariance matrix of An. The
error covariance matrix AnAn' can be approximated in a straightforward manner from
Eq. 4.3.15. If we assume that the major source of error in the determination of n via Eq.

4.3.15isdueto errorsin the vector C" (given by R[‘CLR -R;1), then

An = (D'N-D)-ID'N-IAC (4.3.46)

and

' I

Andn = (ON-DY D (N-acac) (N2) D(DND) ™" = (DNtp) ™ (4347)

if we can replace ACAC' by N, the error covariance matrix of C. We use the form of Eq.

4.3.47 to represent AnAn' in Eq. 4.345, but set AnArn’ :y(D'N‘lD)_l, where the
empirical coefficient y allows for errors in An that differ from those predicted

theoretically. This term is independent of channel for dl channels that see the clouds.
Currently, wefind y =1 works satisfactorily.

The diagonal term of the clear column brightness temperature error covariance
matrix is then given by
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—17%
: 2 N=40B 0O
Ni = ENEAN; A(ny))” + (ARANAN'AR'). % 0.
i % [ ( )) i -|-Déig
The off-diagonal contribution to the clear column brightness temperature noise

covariance matrix Nii’ arises only from the correlated errors made in the reconstructed clear
column radiances of channelsi and i dueto AnAn’

(4.3.48)

) E@_BD_]- E@_BD_]- (4349)
" DT O, [OT L,

The contributions to the noise in channels i and I’ are pogitively (negatively) correlated
when the difference in channel radiances in the two fields-of-view have the same (opposite)
sign. This term is combined with the channel correlated computational noise due to
estimated errorsin variables.

Ni: = (ARANAN'AR')

If channel i does not see clouds, then we set A(ny ) = %1 in Eq. 4.3.48 and
al termsinvolving AnAn' in Eq. 4.3.48 and 4.3.49 are set equa to zero.

Computational noise covariance matrix N°

The computational noise covariance matrix is designed to account for errorsin the

computed clear column brightness temperature O, resulting from errorsin the

geophysical parameters used in theretrieval step. It isassumed that these errors arise
primarily from errorsin variables X; assumed known and held fixed in the retrieval step.

We model N° according to

. f
NG = 3 gﬁ axMpg +0.22 (4.3.50)
- X. J
j j 8
and
NG = 5 991 9 py(m)2 (4.3.51)
= 0X; 0X;

where ? represents the derivative of ©;c| g with respect to parameter X; and ij(m) is
i
the estimated uncertainty in parameter X; in pass m through the system. The parameters

used for X; in modeling NC represent uncertaintiesin surface skin temperature, surface
emissivity and surface reflectance, aswell as constant (in height) shifts in the temperature
profile, and multiplication of the water vapor and ozone profiles by a constant as a function

of height. The derivatives % are computed empirically. Theterm 0.1in Eq. 4.3.50is

J
taken to represent additional unmodeled errors.
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Variable and Channel Selection in the Application of Constrained Least Square
Solution

Surface Parameter Retrieva

Channel radiances depend on severa unknown surface parameters. the surface
skin temperature (T); the spectral emissivity, €(v), and bi-directiona reflectance p(v);
and the microwave emissivity (€,,). Radiances in microwave window channels are more
sensitive to errors in emissivity than to surface temperature and aso have a significant
atmospheric contribution. For this reason, only infrared channels are included in the
surface parameter retrieval step and €, is not solved for.

In the surface parameter retrieval, we selected window channels from both long-
and short-wave IR window regions generally avoiding even weak absorption lines. For

window channels, the transmittance at the surface, T(ps), isgeneraly closeto 1. Although

the opacity of infrared window channels is small, there is absorption and emission due to
the water vapor continuum and the nitrogen continuum, both absorbing primarily in the
lowest portions of the atmosphere. Therefore, the radiance in window regions depends not
onlyon Tg, €, , and p,, but also on the temperature and moisture in the boundary layer.

The radiances of window channels do not depend appreciably on temperature and moisture
above the boundary layer. To account for the additiona dependencies in the surface
parameter retrieval, we also can solve for two additional variables by scaling the total
precipitable water (A/n W) and shifting the air temperature (AT, ). A few channels
centered on weak water vapor absorption lines were included to help account for these
additional variables that will be subsequently modified in the temperature and moisture
retrievals. These weak water vapor lines are in the 3.7 um window and are sensitive to
water vapor absorption as well as reflected solar radiation. The reflected solar radiation
causes the surface to appear hotter than in other window regions not affected by reflected
solar radiation. Therefore, in the short wavelength window, the contrast between the
radiance leaving the surface and that emitted by the boundary layer is enhanced. This
effect, coupled with the increased path length of the solar radiation, makes channels on
weak water vapor linesin thiswindow very sensitive to water vapor in the boundary layer.
Severa of the channelsin the surface parameter retrieval are also used later in the moisture
profileretrieval. Currently, we do not attempt to shift the temperature profile in any pass
because the input temperature profile agrees with AMSU A radiance and is assumed to be
accurate enough. We do not scale the water vapor profile in the second pass surface
parameter retrieval because we have dready retrieved a water vapor profile using AIRS
channelsin thefirst pass.

When we do scale the water vapor, atotal of thirteen variables are solved for in the
surface parameter retrieval for a daytime case (ten for a nighttime case). The perturbation
functions include a perturbation to Tg, a perturbation to each of 8 infrared spectral
emissivity functions, 3 spectra bi-directional reflectance functions, and a scaling of the
water vapor profile. The values of the perturbations were selected to give comparable
values of the S matrix for atypical case. If all perturbation functions F; were half as large,
S;j would be half as large for each mode, and the solution vector AA; would be twice as

large. The perturbations should be large enough to produce significant S matrix elements,
but not so large as to produce an appreciable non-linear response.

The Jacobian or sensitivity matrix S" is computed every iteration. The partial
derivative of channel brightness temperature with respect to the coefficients of each of the
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above functions is computed empirically as follows: (1) Compute the channel i radiance
and corresponding brightness temperature using the nth iteration parameters (i.e.,
T2, €7, q"(P), etc.) (2) Compute the channel i transmittance (if necessary), radiance, and
corresponding brightness temperature, using the nth iteration parameters but setting the
coefficient (AA j) of perturbation function F; to unity. (3) The sensitivity S;;, or change in
channel i brightness temperature per unit change in coefficient AA;, is given by the

difference in brightness temperatures computed in steps (1) and (2). The sendtivity or
partia derivative of brightness temperature with respect to ground temperature, spectral
emissivity, and surface bi-directional reflectance can be computed theoretically by
differentiating the clear column radiative transfer equation (and converting to brightness
temperature) because the transmittance functions do not depend on these parameters.

After the sengitivity matrix is computed, the inversion procedure described earlier
proceeds. In the ground temperature retrieval, we did not include modeled channel
computational noise in the noise covariance matrix, but including only the estimate 0.1°C
for unmodeled computational noise from other sourcesin Eq. 4.3.50. The retrieved values
of Tg,¢,, and p, will be held constant and used in the subsequent iterative steps for

temperature, moisture, and ozone profile retrievals. The shifted water vapor profile will be
held fixed in the transmittance and radiative transfer calculations for the temperature profile
retrieval and used asthefirst guessin the water vapor retrieval.

Temperature Profile Retrieval

The temperature profile retrieval problem is set up and solved in a manner
completely analogous to the surface parameter retrieval. The solution for the retrieved
temperature profile iswritten in the form

T'(P,)=T°(P,) + §Fj (P,) A =T°(P) +FA , (4.3.52)
=1

where ¢ ranges over the number of levels used to compute channd transmittances and
radiances, and j ranges over the number of functions that we solve for, currently set equal
to 13. The functions in the surface parameter retrieval were taken as discrete changes in
different surface or atmospheric parameters. Following the approach of the surface
parameter retrieval, the functions F; are selected as locdized functions of pressure,

corresponding to changes in temperature primarily in a layer from B to B_;. Use of

localized functionsis convenient for computing the S matrix and makes the problem more
nearly linear. The methodology discussed previously does not require the functions to be
orthogonal. In order for the solution to be continuous, the functions chosen are trapezoids,

with avalue of 0.5° between P, and B_; and falling linearly in log P to 0° & P, and
P._2. The highest and lowest functions in the atmosphere are specia cases, with values of
1° at the upper or lower limit of the atmosphere (1 mb or the surface), 0.5° at the adjacent

pressure, and followed by 0° at the next pressure level.

The Jacobian matrix is computed exactly as in the surface parameter retrieval. In
any iteration, transmittances and brightness temperatures ©; are computed for the
temperature sounding channels using T"(P) and T"(P) + F;(P), where F;(P) is one of
the trapezoids, and the Jacobian is obtained empirically according to
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=0 [T"(P) +F(P)|-o [T"(F).

(4.3.53)

It can be shown that for an opague temperature sounding channel, a shift of the
entire atmospheric temperature profile by 1° will cause roughly a 1° change in brightness
temperature (Susskind et al., 1984). Moreover, alocalized change of 1° in an atmospheric
layer containing the non-zero part of the channe's weighting function will likewise result in
a 1° change in brightness temperature. This brightness temperature change will drop off as
the layer becomes thinner than the weighting function. To insure sengitivity of at least one
sounding channel to changes in the layer (trapezoid) temperatures, layers were selected to
be coarse enough to have an element of the S matrix of at least 0.2 for the layer. While the
Jacobian is profile dependent, the layer structure used to define the trapezoid functions was
held fixed for dl soundings. They were selected so as to be neither too thin, resulting in
lack of sengitivity, nor too coarse, resulting in lack of resolution. The pressure boundaries
for the 13 functions used in this study are shown in Table 4.3.2. According to Eq. 4.3.52,
the only structure in the solution finer than the spacing of these boundary levels must come
from the initia guess. In fact, transforming and damping functions as discussed earlier
will further decrease the ability of the solution to discern fine structure not contained in the
information content matrix S'WS. Thisdamping is profile dependent.

In the temperature profile retrieval, it is desirable to select channels which are
relatively insenditive to the ozone and water vapor distributions because these variables
have not been solved for except for an estimate of the verticaly integrated water vapor
content obtained in the surface temperature retrieval step. In addition, it is desirable to
select temperature sounding channels between absorption lines to obtain the best channel
weighting functions (Kaplan et al. 1977). Along the lines of Kaplan et al. (1977) and
outlined in Table 4.3.1, we selected 96 channels in the 15 um CO2 band, using Q-branch

channels near 666 cm™ to sound the mid to upper stratosphere; channels in between CO2

absorption lines and near the 720 cm™ and 740 cm™ Q branches to sound through the
upper troposphere; and twenty nine channels in the CO2 4.3 um band P and R branches,
primarily in the vicinity near 2380 cm™, to sound the mid to lower troposphere. The
noisiest spectral regionisnear 15um. For this reason, many of the 15 um channels used
represent spectral intervals sampled twice per channel width. This adds little information
about the vertical structure but increases signal to noise. We aso included 12 AMSU-A
channels, (2-14 from Table 2.3), in the temperature profile retrieval.

Unlike Kaplan et al. (1977), we have aso included 17 temperature sounding
channels between absorption lines in the 15 um CO2 band that are sendtive to the mid-

lower tropospheric temperature profile.  The incluson of these channels does not
appreciably affect sounding accuracy under clear conditions but are very significant under
cloudy daytime conditions, for which effective noise levels of the 4.3 um tropospheric
sounding channels can become large. In selection of these channels, we avoided spectral
regions near water vapor lines of appreciable strength. The channd radiances of the mid-
lower tropospheric temperature sounding 15 um channels are still affected by water vapor
because of absorption due to the wings of nearby water vapor lines as well as the water
vapor continuum.

Errorsin the estimate of the water vapor profile used to compute the radiances will
produce errors in the computed brightness temperature for a given channel, aswell as
correlated errors in other temperature sounding channels sensitive to water vapor
absorption. These errors must be accounted for in the channel computational noise

covariance matrix N¢ if channels sensitive to water vapor are to be used optimally. While
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it isdifficult to estimate the radiance error due to errorsin the water vapor profile, the error
in achannel radiance due to a multiplicative error in the entire water vapor profileis easily

Temperatureretrieval  Moistureretrieval  Ozoneretrieva

1 20 1
2 100 20
5 200 60
10 300 140
20 400 300
60 500 surface

100 600

140 700

190 850

300 surface

475

650

825

surface

TABLE 4.3.2. TRAPEZOID OR LAYER ENDPOINTS

computed. If the fractional error in total water vapor is X, then the error in computed
brightness temperature is given by

00, _ o7 (x)-e(0)

: (4.3.54)
0lnW X

where O] (x) is the brightness temperature computed for channel i using al nth iterative
parameters, but with the water vapor profile scaled by 1 + x. In computing the noise
covariance matrix for the temperature profile retrieval, we set AW =30% at night
and 20% during the day, during which the surface parameter retrieval provides an
improved estimate of total precipitable water. Both values are set to be larger than the error
in total precipitable water obtained after the ground temperature retrieval, because we did
not take detailed profile errors into account.

The effects of errors in the estimated water vapor profile on computed channel
radiances, as well as radiance errors due to errors in ozone profile and surface parameters,
aretaken into account in the computational noise covariance matrix (Egs. 4.3.50, 4.3.51).
The noise due to errors in the ozone profile is computed analogoudly to that for the water
vapor profile with the value A/nO3 set equa to 20%. Errors in retrieved ground

temperature, surface emissivity, and bi-directional reflectance are correlated with each

other. For example, high values of surface skin temperature will be compensated for by

low values of emissivity. To account for this, we set the effective error of Tg to a value

which is less than the actua error in estimated surface skin temperature in computing the
n

noise covariance matrix. We then define g(_?' as the error in brightness temperature for
S
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n
@'.We

channel i given the effective error in T;. We also include an analogous term for 0
i

set ATg =1° and Ap=0.005.

Incorporation of these terms into the noise covariance matrix has the effect of
making channels sensitive to water vapor absorption, ozone absorption and/or the surface
temperature appear noisier. It should be noted that in generd, the mid-lower tropospheric
sounding 15 pm channels will be "noisier” for moist cases than for very dry ones, where
uncertainty in water vapor profile will have a smaller effect on the 15 pm radiances.
Conversaly, 4.3 pm channels are “noisier” during the day than at night.

The contributions to the noise covariance matrix due to errors in estimated total
precipitable water and surface skin temperature are included for dl temperature sounding
channels. Neither isincluded in the ground temperature retrieval because both variables are
being solved for. The estimated error in surface temperature is included in the noise
covariance matrix in the subsequent steps of water vapor profile retrieval and ozone profile
retrieval, and the estimated error in water vapor profileisaso included in the ozone profile
retrieval, but not in the water vapor retrieval.

Theretrieval step described above is done after the AMSU retrieval step has been
donein the start up system. That AMSU retrieval step is analogous, but uses only AMSU
A channels and stratospheric AIRS temperature sounding channels, and solves for the
microwave emissivity aswell as coefficients of the 13 temperature perturbation functions.

Water Vapor Profile Retrieval

Unlike the surface parameter and temperature profile retrievals, the water vapor
profile retrieval problem is highly non-linear. A change in water vapor abundance in a
given level affects the transmittances and atmospheric emission and absorption at al higher
pressure levelsin a complex manner. Nevertheless, the problem can be set up and solved
in a completely analogous manner. In the surface parameter retrieval, the entire water
vapor profile (up to 50 mb) was multiplied by a constant unknown factor. Following this
form, the solution for the retrieved moisture profileis expressed as

o J 0
n(P,)=go(P +S F (P,) An[, 4.3.55
q"(P:) Q(e)glzz i (Pr) ,5 ( )

where ¢ ranges over the 64 levels used to compute transmittances and radiances, and |
ranges over J solution functions. The functions F (Pf) are expressed as trapezoids with a

value of 0.05 in coarse aimospheric layers, in a manner analogous to that described above
in the temperature profileretrieval. The endpoints of the 8 trapezoids used in the moisture
profileretrieva inthiswork areincluded in Table 4.3.2. The highest trapezoid has a vaue
of 0.05 a 100 mb and 200 mb and 0 a 20 mb. The water vapor profile is not adjusted
above 20 mb due to the lack of sensitivity of the radiances to the small abundance of water
vapor in the stratosphere, assumed to be reatively constant. The lowest function is
comprised of two straight lines, with avalue at the surface and 850 mb of 0.05, and a value
of 0. a 700 mb.

In the moisture retrieval, we included channels between absorption lines in the 6.3
um water vapor band that are sensitive to humidity throughout the troposphere. These
channels provide sharper weighting functions (more localized absorption) than centers of
strong lines and make the problem more linear. We aso included channels on and off
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weak water vapor absorption lines in both the 11 ym and 8 um windows, that are sensitive
to the water vapor continuum and improve sounding capability of the lower tropospheric
humidity, and in the 3.7 um window, that provide improved sensitivity to low leve
moisture during the day. The S matrix is computed empirically exactly as in the
temperature profile retrieval. The parameters determined from the surface and temperature
profile retrievals are assumed true and kept fixed in the calculations.

In constructing the noise covariance matrix, we included terms for uncertaintiesin
ground temperature, as in the temperature profile retrieval, as well as aterm shifting the
entire temperature profile by a constant, as done in the noise covariance matrix used in the
determination of n (Eg. 4.3.10).

Ozone Profile Retrieval

The solution for the ozone profile retrieva has the same form as that for the
moisture retrieval. For the ozone retrieval, we used 5 trapezoid functions with values of
0.05, asin the water vapor retrieval. The end points of the trapezoids are included in Table
4.3.2. The same steps outlined in the previous section are used to compute the Jacobian. It
is critica to solve for water vapor before ozone because ozone channels are senditive to
absorption by boundary layer water vapor. We selected 23 channels in the 9.6 pum ozone
band for the ozone retrieval. Uncertainties in surface parameters, temperature profile, and
water vapor profile are included in the ozone noise covariance matrix.

Subsequent to the ozone profileretrieval, the 4 retrieval steps are repested, using dl
retrieved quantities as the first guess. This produces a small improvement in results
because the surface parameter retrieval, while not highly sensitive to temperature and
moisture profiles above the boundary layer, has some residua senstivity to these
parameters. Likewise, the temperature profile retrieval and dl other steps benefit from
improvementsin all other variables. The results do not change appreciably if we repeat the
retrieval stepsathird time.

Retrieval of Cloud Properties

The observed radiance for channdl i, R;, in a scene with j different cloud types is
given by

U U
_ 4.3.56)
R =d->9%Riclr * 29Ricipj (
Bl j JHQ' g

wherea j is the fraction of the scene (as seen from above) covered by cloud typej, R; ~

is the clear-column channel i radiance (i.e., the radiance emerging from the clear portion of
the scene), and R; | pj is the channel i radiance emerging from the cloudy portion of the

scene covered by cloud typej, (Chahine, 1982).

The computation of R;cp; for a given scene is complex due to the detailed

spectral absorption and reflection properties of clouds, cloud morphology within the field-
of-view, and geometric shadowing factors. If we assume plane parallel cloud formations
and assume nadir viewing, R;c| p,j can be expressed as
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Udr O
RiCLD,j = Tichi(pcj )Ti(pcj) + siCjBi(TCj )Ti(pCj) + Igc- Bi[T(p)] EdTnlp %dfnp
J
+p‘CJHIT‘§)CJ Q:OS 90,

where R; (P, ) isthe upwelling radiance at cloud top pressure Pe;, and Tic, and g, ae
i
respectively the transmissivity and emissivity of cloud type j a channel frequency v,
|

(4.357)

Bi(TCj) is the Planck function evaluated a channd frequency v. and cloud top
|

temperature L% isthe cloud bi-directional reflectance of solar radiation incoming &
i i
solar zenith angle 6 and outgoing in the direction of the satellite, v (pC ) is the two
(0] .
J
path atmospheric transmittance from the top of the atmosphere to the cloud top pressure
P s and H_ is the solar irradiance. In Eq. 4.3.57, the first term represents upwelling
: i
]
radiation from below the cloud that passes through the cloud; the second term represents
radiation emitted by the cloud that is transmitted by the atmosphere to the satellite; the third
term represents that portion of the radiation absorbed and emitted by the atmosphere above
the cloud, and the fourth term represents solar radiation reflected by the cloud in the
direction of the satellite. We have neglected a small term due to downwelling thermal
radiation reflected off the cloud in the direction of the satellite.
If thereis only one cloud type in the scene, R; ¢ p 1 can be expressed as

dr;
R. -1._R BT )T 1-t.. )° BT %ﬁ'%ﬂ
i,CLD,1 ~ Ticy i, CLR ™ Eic; i( cl)Tl(p01)+( T'Cl)Ipcl e mptf T (4.3.58)
+pi'clHiri’(pC1) cos 8,

When doing cloud property retrievals, we limit the channels to frequencies less than

1250 cm-1, for which the last term in equation 4.3.58 is not significant. If we make the
approximation that t i = (1-¢ i ), then equations 4.3.56 and 4.3.58 can be combined to
1 1
give
D = B (4.3.59)
Ri = (1— Glﬁicl)Ri,CLR + (O(lsicl) RicLo (pcl)

where RP (p_ ) istheradiance one would get from a black cloud (r. =0,&._= 1)
i,CLD c1 Ic ic
at cloud top pressure pcl. It is apparent that the term o ¢ sicl appearsonly as a product in

equation 4.3.59. Therefore aande;. cannot be determined independently from each

IC
other, but only as their product, which can be thought of as a radiatively effective cloud

fraction that may be a function of frequency. To the extent that ¢;. is a function of
frequency, one can express the frequency dependent term aggic, 8 (ascv)l Fy(v) where
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(ag - ), isarepresentative value of the effective cloud fraction o 1£e a a given frequency
1

v, andFy(Vv) expresses the frequency dependence of zﬁ .
cv
If we consider the case of two cloud types, where we again assume
Tic, = (1- €ic ) , then the radiances can be written as

2

R =(1-G8 . -@& _)R va@E. RS(p Y+ae R2(p )

i i,1 i,2”’7i,CLR 170 e 271 e, (4.3.60)
where ae, 1and ag, , are radiatively effective cloud fractions for the clouds at P, and

1

p. - Forthehighercloudat p_, @gj; =ay e~ asbefore. On the other hand, for the
2 1 1

lower cloud

Ggjp =€, [0(2 +(1—sic )0(10(12] (4.3.61)
2 1
where o 1 isthefraction of the area covered by cloud type 1 which is under- covered by
cloud type 2. In equation 4.3.61, €ic multiplies the cloud fraction for layer 2 as seen
2
from above, which is comprised of two parts. « 5 being the fraction of the scene covered

only by clouds in layer 2, and (1- €. being that part of the scene covered by

)a, a
. 11
clouds of both type 1 and type 2, which is seen through cloud type 1, with transmissivity
(1- €ic ). If either €ic isindependent of frequency or a, is the same for dl fields of
1 1
view, this situation corresponds to two cloud formations. In thefirst case, the radiances are
equivalent to awell defined, frequency independent amount of each type of black cloud. In
the second case, cloud type 1 has a constant spectra dependence in each field of view

which combines properties of cloud types 1 and 2. To the extent that (1- sicl) is

frequency dependent, and a, depends on field of view, this situation actually contains
three cloud formations, because the spectral dependence of radiances in areas covered by
clouds at both levelsis different from that of clouds at either of the two levels, in a manner
that is field of view dependent. The significance of this with regard to determination of
clear column radiances remains to be tested. With regard to determination of cloud
parameters, the spectral dependence of G contains the product of two spectraly

dependentterms e,  and e. . Tofirst order, we can sill write ae. _ =oae_ F_(v) but
|02 |c1 i,2 c2 2
care must be taken in interpreting F, ().
We have currently attempted cloud parameter retrievals using the AIRS team

simulations, which had two layers of clouds with constant known spectral emissivity
(=0.9) with a 1 equal to zero for al fields of view. Observationsin each of the three

fields of view k=1,3 used to do cloud clearing were used to determine the cloud
parameters. The channel radiances R; i can be expressed as

Rk = (1_ (G_E)Jk _(O(_S)Zk)Ri,CLR + (ﬁ)kRF(pcl) * ((J(_“?')sziB (pcz) (4:362)
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The cloud parameter retrieval is performed after all other parameters are solved for,
in an exactly analogous manner to that of al other retrieval steps. Given a surface skin
temperature, surface spectral emissivity, and atmospheric temperature-moisture-ozone

profile, R. and RP(pCj) can be readily computed. The only unknowns in equation

,CLR

4.3.62 are (ﬁ)jk j=12;k=13andp_ andp_ . Weuseobservations R inthe3
1 2

fields of view for the 15pum and 8-12um channels used to determine n to solve for these 8

variables. The noise covariance matrix N used to retrieve cloud parameters, which

represents both noise in the observations and uncertainties in the computed values of

R o R istaken to beidentical to that used to determine n (Eg. 4.3.10).
Given the mtN jterative cloud parameters gy 08, PP we define
YM =Ry -RD = (ﬁlk - Ri,CLR) + ; OFEE (Ri,CLR - Ri(p@})) (4.3.63)
J:

where ﬁi,k is the observed channel i radiance in field of view k and RI} is computed
from the mt" iterative parameters. Thisgivesriseto the iterative equation

1 2N gj D—aRi(apcj)ED
ym ym = % -Ri(pM) —~AaeM + eM——— 1 apM
ik k™ :ZJ,Z LCLR = Mite ' rH ™ ik j :ZJ,Z ik apcj C;
O [
U U m
=y ¥ mel + Y L&m Uap
=12 |k,Aasjk 0 k=92 H |k,ApCj c. (4.3.64)

where the termsin brackets are the appropriate Jacobians, which are computed empirically

oR.
asare dl other Jacobians. It should be noted that if ag., (for al k) and/or ap_l (for dl 1)

J C.
J

aresmall for agiven P the Jacobian for that cloud top pressure will be small and that
j

cloud top pressure will be contained primarily in a heavily damped mode and not be

changed significantly from the initial guess. Inthe AIRS team simulations conducted thus

far, the second cloud formation usually contained small amounts of low clouds, and P,

2
was in general not well determined from the data.

For our retrievas, the first guess cloud top pressures were taken as 350 mb and
650 mb, and the first guess effective cloud fractions were taken as 0.25 for each cloud type.
The solution was constrained such that P, 2 100 mb, P, <Pg~ 50 mb where Py is the

1 2
surface air pressure. In addition agyy +agp Was congtrained to be <10. If the second

cloud fraction is ether set very small in the first guess, or becomes very small in the
retrieval, one can no longer determine useful information about the second cloud top
pressure.
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Product Error Estimates
Error estimates of AIRS team products, on a retrieva by retrieva basis, are an

important part of the dataset. This involves estimating likely sources of error and
propagating them through the retrieval process.

Clear column radiance error estimates

The most straightforward example of error estimation in our retrieva is the estimate
of the channel error covariance matrix of the cloud cleared radiance. Obtaining cloud cleared
radiances, including their error estimates, isacritica step in theretrieva of other geophysical
parameters from AIRS because they are included in the noise covariance matrix of each
retrieval step. The clear column radiances are also an important product for those desiring to
do radiance assimilation using AIRS observations.

The clear column noise covariance matrix N is given in Egn. 4.3.48. The predicted
error in clear column radiances, R; ¢, for channel | and case ¢ is given by the sgquare root of

A

the diagonal term of the clear column radiance noise covariance matrix, N:
R ) 5 . 22
OR;, = %'EANi A(nizni2) , Tt V[AROBSM(A”AW)@ AR OBS,i/] q (4.3.65)

This prediction has a strong case dependence resulting from the noise amplification factor,
A(r]ill, r]i,g) ¥ differencesin the vector ARpgs; ¢, corresponding to differencesin the fields of

view (ﬁi,l - Ri,k)é; aswell asdifferences in the predicted error covariance (AnAr]') . There

is also a strong channel dependence resulting from NEAN;, ARogs;, and A(ni, ni2),
which is much smaller for channels that do not see clouds.

Product error estimates

In each retrieval step we solve for the change in coefficients of functions which will
minimize the radiance residuals. In Egn. 4.3.34, an estimate of the uncertainty of these

coefficients, AI§JF‘ isgiven. Aéjf‘ has a strong case dependence due to the propagation of

the clear column radiance error in the noise covariance term (see Eqgn. 4.3.41). The
uncertainty coefficients are transformed in exactly the same manner as the solution
coefficients, ABy,, to obtain the propagated error in the geophysical parameters:

0

SAM =UNB" =U G~

(4.3.66)

The error estimates are calculated at each retrieval step and each iteration; however,
they are updated estimates, not a change to an existing error estimate. Errors in A (0A)
propagate into geophysical parameters according to

SXH. = /zpj [(5Ajn)2 (4.3.67)
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In addition, we need to add another component of the uncertainty due to the non-
uniqueness of the solution. This null-space error, dXy, is derived from a large ensemble
of cases. In genera, the propagated error estimateis given as

S+ = \/6XN ZF, [(6An) . (4.3.68)

This equation is analogous to the equatlon for the solution, Eqn. 4.3.17. For example, for
the temperature profile, we use 13 trapezoidal functions to solve for the change to 13
coefficients, AA;. We would compute the error estimate for the temperature column with
our estimates of dA asfollows:

5TM(p) = \/6TN ZFJ [(6An) (4.3.69)

For moisture estimates we solve for a % change in the column density that best
matches the observed radiances. The moisture error estimates are caculated in an
analogous manner to the solution coefficients (given in Egn. 4.3.55) and given by

éqn+1 [\

Closed-loop operation

D5NI0)

WE+ S Fi(p E(BAJ) (4.3.70)

Our experience with smulated radiances has shown that improving the noise
covariance matrix in the retrieval and cloud-clearing steps will improve the results. The
case dependent error estimates, dX, can be used to compute the computation noise
covariance matrix, N¢, instead of the ensemble estimates that are currently used. The error
estimates will alow the case dependence of the cloud cleared radiance error estimate to
propagate through the retrieva into error estimates for the geophysical retrieval. These
estimates can then in turn, be used to re-estimate the cloud cleared radiance estimates
through the updated and case dependent value of N¢. Difficult cases (i.e., low scene
contrast) may benefit substantially from more realistic weighting of the channelsin the later
retrieval stages.
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5. Tuning and unce'tainty estimates

51 Tuning (McMillin)

To be useful for numerical forecasts, AIRS data must be consistent with data from
other sources. Errors in both the AIRS data and the other data contribute to systematic
differences between different data sets. These are removed by a satistical adjustment
procedure. There are errors in the AIRS data that can be recognized in the data and
removed. A linear shift in the detector array is one example. It is assumed that these
corrections have been made. It is also assumed that a set of match data are available in
which there are pairs of radiances, one caculated from some measure of truth and one
observed by the AIRS. The problem is to make an adjustment to remove the systematic
differences.

Before proceeding, it is useful to discuss the calculation procedures. Although the
calculation of radiancesis easy using the procedures of section 3 once the atmospheric state
is completely specified, radiosondes and other sources of information often provide an
incomplete description of the atmospheric state. For example, a radiosonde specifies the
temperature and water vapor in the lower part of the aamosphere. The radiances depend on
the these data as well as the upper atmosphere and the surface skin temperature. These can
be obtained from the satdlite retrieval. Values of other gases such as ozone can be
obtained from the retrieval as well. When this is done, the adjustment will preserve the
original, theoretica relationships between the atmospheric state and the calculated values
for these variables, but will adjust the theoretical relationships for those variables for which
an measure of truth isavailable.

Approach

An obvious way to do the adjustment is to use measured values to predict the
caculated values. It is common to adjust the measured values because the data are
frequently used in an iterative retrieval procedure in which the radiances are calculated a
each iteration. This means the adjustment needs to be done only once. Using normal
regression for the adjustment has some problems. Oneisthat the regression is likely to be
numerically unstable. A second is that the coefficients are physicaly unredistic. It is
reasonable to expect that the regression coefficients should be dight perturbations to the
identity matrix. That is, the calculated radiance should depend on the measured radiance
with a coefficient that is nearly unity, and the dependence on other channels should be
small. This is the form one would expect for a dight error in the weighting function
height. The desired solution is given by the shrinkage operator (Oman et al.. 1982). The
particular derivation is found in the appendix of Crone et al.. (1996). The shrinkage
estimator, C, is obtained by finding the C that minimizes the trace of [(C-C,)" (C-C,)]
subject to the constraint that the trace of [(Y-CX)(Y-CX)'] is held constant. This can be

done by setting the derivative 6% Tr(C- CO)T(C - Cp)| equal to zero. Doing thisgives

2(C-Cg) +y(-2YXT +2CxXT)=0 (5.1.1)
which leadsto
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Co=(YXT +yCo)(XX T +yN)7L (5.1.2)

For many purposes, this form of the equation is fine and is the one used for current
sounders which have tens of channels. However, for a high resolution instrument like
AIRS, the number of channel increases by a factor of about 100. Not only does the large
number of channels increase the computations, the larger number, coupled with the fact
that more channels are similar, increases the numerical instability. The retrievals are being
done with linear transformations such as eigenvectors or “super channels’, which are
averages of channels that are highly correlated with each other. Thus they contain no
unique information, but are averaged to reduce the noise. If we consider a linear
transformation of X, then we have the equations

Y = CX=C,E (5.1.3)
which can be solved to give
Cot =CET(EET)™ (5.1.4)

provided that the inverse exists. This transformation is needed because the initial
coefficients are known in the form of C,, but the values of C,, are required to solve the
equation. In some cases the inverse may have problems so it is best to avoid the problem
by writing equation (5.1.2) as

Ce=(YXT +yCy +CoXX T =CoXX (XX T +yn71 (5.1.5)

which can be rearranged to give
Cq=Cg +(Y +=CoX)X T (XXT +yN)71 (5.1.6)

which is the same as ridge regression on the quantity (Y-C,X) instead of Y. In thisform,
alinear transformation becomes

Ce=Cio +(Y +—CioEX)X TET(EXXTET +yi) ™ (5.1.7)
which leadsto
Y = Cio =[(Y +—CoBEX)X TETI(EXXTET +y1) 1EX (5.1.8)

In thisform, it is possible to replace CE with C, to give

Y = CoX =[(Y +-CoEX)X TETI(EXX TET +y1) LEX (5.1.9)

This is a particularly attractive form when C, consists of the identity matrix. We
note that the problem is trivial when the linear combination consists of the eigenvectors,
because EE' is the identity matrix for that case. However, the form given above is
completely genera. It may turn out that the best transformation to a smaller subspace is to
perform a stepwise regression. The exact subspace is a detail that will be resolved when
datawith the appropriate error structure (smulated or real) become available.

In use, the value of gamma is empirically adjusted to give small departures from
the expected values. Theresult isaset of coefficients that give nearly the same reduction in
variance on the dependent set asis given by normal regression, but that have the desirable
physical property that the calculated value for each channel is given by the measured value
plus small corrections. Procedures for doing constrained regressions have been
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documented in aseries of papers (McMillin et al.. 1989 , Crone et al.. 1996, Uddstrom
and McMillin 1994a, Uddstrom and McMillin 1994b).

Use of coefficients

Once the coefficients are available, they can be used to make adjustments to the
radiances. The adjustment takesthe form

Y =[Y, = (C, + C)X,] + (C, + C)X (5.1.10)

where Y represents the adjusted radiances, Y , represents the sample mean, C, represents
the initial coefficients, X represents the measured radiances and other predictors, X,
represents their mean values, and C is given by

C=[(Y-C,X)X"ET(EXX'E" + 1) E. (5.1.11)

In this form, values of C represent minor perturbations to the values of C, which perform
most of the prediction. For example, C, would generdly have a value of 1.0 for the
channel being corrected, and a value of zero elsewhere. The vaues of C would represent
the empirical adjustments.

5.2. Simulation System (Haskins, Aumann)

The current software has afull level O to level 2 data product simulation with three
goalsin mind: (1) core algorithm performance is based on the simulation, (2) robustness
testing of the AIRS data product algorithmsis based partly on ssmulation, (3) data product
validation requires an extensive smulation effort. The simulations are to be as redistic and
challenging as possible as well as extensive enough to provide a complete set of exception
conditions. The components in the AIRS simulation are described in Figure 5.2.1.
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FIGURE 5.2.1: AIRS SIMULATION SYSTEM
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This discussion will focus on the simulation of level 2 data. The AIRS simulation
effort involves several independent groups within the AIRS Science Team:

1. Thegeophysical data are generated by team members at NOAA's National Center
for Environmental Prediction (NOAA/NCEP) using experimental mesoscale
models. The model used for the current simulation comes from the forecast for
July 1, 1993. It covers about 3080 km in longitude, 4700 km in latitude with a 40
km spacing grid, and is centered on the western part of the United States. At every
grid point the model lists the temperature, water vapor, and fractiona cloud cover
as functions of pressure between 30 mb and the surface. These data are called Level
2 geophysical data by EOS.

2. The simulation team selects satellite tracks from the mesoscale model and converts
them to the radiances (level 1B) which the AIRS, AMSU and HSB instruments
would observe. All important instrument-related effects, such as detector noise,
gaps in the spectral coverage, wavelength, and the spectral response function of
each channel, areincluded in the calculations of the Level 1 data.

Three types of data are distributed to facilitate the task of the algorithm devel opers:

1. Traningdata: Thisis aset of about 2000 temperature/moisture profiles which are
statistically representative of the mesoscale model data.

2. Truth data: Thisis both Level 1 data and the exact retrieva solution (the Level 2
data which was used to create the Level 1 data). The developers use this data to test
the accuracy of their algorithms.

3. Testdata ThisisLeve 1 data, whichis dtatistically similar to the Level 1 truth data,
but for a different ensemble of cases which are known only to the s mulation team.

The agorithm development teams return their results from the test data and the
truth data, together with the software used to obtain the results, to the smulation team. The
retrievals are evaluated for accuracy. The software is evaluated for computer resource
requirements (CPU and 1/O utilization) and compliance with reasonable software
engineering standards. Periodic meetings of the AIRS Science Team are used for
discussions of simulation procedures, retrieval accuracy, and retrieval resource
requirements.

The agorithm development, as described above, was started in 1992. The initia
tests were simple: Night time, cloud free, surface with no éevation (i.e, a 1000 mb
pressure) and with known, wavel ength-independent emissivity and reflectivity. Since then,
the ssimulation has advanced to include daytime, wavelength-dependent and unknown
surface emissivity and reflectivity, realistic topography, and cloud covered scenes.

TOVS datafrom HIRS 2/MSU indicate that 45 percent of the time, there are clear
conditions, about 35 percent of the data are partly cloudy, but the retrievals are acceptable,
while the remaining 20 percent of the data are too cloudy for the HIRS 2/MHS to produce
usable retrievals. The first test data including clouds was released to the algorithm
development teams in August 1994. This test was called the single layer gray cloud test.
The statistical distribution and cloud granularity were patterned using the statistics obtained
from the TOVS data. Thelevel 2 truth was taken from a 6-hour forecast using the NCEP
Etamode for July 19, 1993. For this test, the smulation program used Level 2 data from
four satellite tracks crossing the model area from south to north (tracks A, B, C, D in
Figure 5.2.2) and converted them to the spectral radiances as described above. (The
curvature of the tracks is an artifact of the mercator map projection).
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There are 45 cases taken across each track, each covering as area the size of a nadir
AMSU A footprint. The model forecast for the center of the footprint was taken as truth
across the entire footprint. AMSU-A radiances were simulated for this spot, as well as
AIRS and HSB radiances. for a 3x3 array of spots within the AMSU-A spot. These
smaller spots were assumed to differ only in the amount of clouds, which behaved
identically in al 9 spots (i.e. different amounts of the same type of cloud).

As this was the first smulation of cloudy data, the data set was limited to two
layers of clouds, but a single cloud formation and the clouds were simulated as spectrally
gray, i.e, the emissivity and reflectivity were unknown, but wavelength independent.
Figure 5.2.3 shows the fractional cloud cover averaged over the 9 spots for each of the 45
cases dong track B. The fractiona cloud cover in the AIRS FOV ranged from 20 to 90
percent. The cloud top pressure ranged from 850 mb to 100 mb. Figure 5.2.4 shows the
cloud liquid water content along track B. It averages about 0.01g/cn??, but exceeds 0.03 ¢/
cm? near latitudes 44 and 52°N. The onset of precipitation is between 0.02 and 0.04 g/ cn’.
This data set represented a severe test of the ability of the combined infrared and
microwave sounding capability of AIRSYAMSU and HSB.
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FGURE 5.2.3: TRACK B CLOUD FRACTION  FIGURE 5.2.4: TRACK B CLOUD LIQUID WATER
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Current Team Algorithm Simulation results (July 96)

Current simulation results of the AIRS Team Algorithm are summarized in Table
Figure 5.2.1 and a sample vertical profile of RMS errors for Track NB is presented in
figure 5.2.5. Results are shown for temperature are for RMS layer mean temperature
errors in 1 km layers up to the tropopause, then 2 km layers. Results shown for water
vapor are for RM S percent errorsin layer precipitable water for 2 km layers up to 200 mb.
The statistics are broken out for each track and each step of the algorithm. In the following

the first letter refers to night (N) or day (D).

The second letter refers to the track

(A,B,C,D). TheTrack DPistheday ‘D’ track with two independent cloud formations.

Night Simulation Track NA NB NC
Retrieval MW RET RET|MW RET RET (MW RET RET 2
Stage only 1 2 |only 1 2 |only 1
Surface Temperature
RMS Error (°K) 16 04 01|27 05 01|32 08 02
Tropospheric Temperature
RMS Error (°K) 18 14 11|19 12 10|20 11 08
Total Water Vapor Column
Density RMS Error (%) | 208 6.9 6.4 139 168 152151 106 7.6
Total Liquid Water Columr
Density RMS Error (%) (| 88.3 N/A N/A[100.0 N/A N/A | 850 N/A N/A
Total Ozone Column
Density RMS Error (%) | N/A~ N/A 18 | N/A N/A 25 [N/A N/A 37
Day Simulation DB DC DD DP
Track
Retrieval Stage MW RET RET| MW RET RET|MW RET RET[MW RET RET
only 1 2 only 1 2 only 1 2 only 1 2
Surface
Temperaturgg 6.1 12 12 75 12 0.7 90 08 06 90 21 12
RMS Error (°K)
Tropospherig
Temperaturgg 1.7 13 11 15 11 09 17 12 10 17 13 12
RMS Error (°K
Total Water Vapo
Column Densityfl 13.0 106 92 131 72 39176 71 39 176 58 53
RMS Error (%
Total Liquid Wat
Column Density| 86.0 N/A N/A[ 69.5 N/A N/A| 98.8 N/A N/A[ 98.8 N/A N/A
RMS Error (%
Total Ozong
Column Density| N/A N/A 21 N/A N/A 16 N/A NA 23 N/A N/A 1.7
RMS Error (%4

TABLE 5.2.1: SUMMARY STATISTICSFOR THE AIRS TEAM ALGORITHM
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Robustness Testing
The Simulation Team has the following additional ssimulations planned to test for

Core Algorithm Level 2 robustness:

1.

N

CoNOOU AW

Gradient Effects -- effects of inhomogeneous temperature, water, and emissivities
within the 9 AIRS FOV's

Cij effects -- errors associated with mis-alignment of the FOV's (current
specification is 99% alignment).

First Guess -- sensitivitiesto first guessfields

Multi-spectral non-gray Clouds

Viewing angle simulation

Channel outages

Frequency Shift

Cdlibration Errors

Tuning (see 5.1) -- used to account for radiative transfer errors

10. Optical Effects -- shiftsin the Slit Response Function (SRF - see section 3.2)
11. Others as needed

Data product Validation
The simulation is one methodology to provide theoretically-based estimates of

parameter space errors. For example, given a one degree error in temperature, how does
this effect the accuracy of, say, the ozone retrieval. Also, the ssmulation can be used to
provide estimates based on formal error propagation anaysis.
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6. Numerical Computational Considerations (L ee)

6.1 Parameter Description

Thetable 6.1.1 lists the products from the AIRS level 2 data processing software and the
major parameters (and parameter numbers) in the products. The third column in the table
are the short description of the parameters and their units. All the products will have

associated error estimates and/or quality flags.

Product | Product name
Number Parameter name (parameter #) Short description
AIR04 | Cloud product
Cloud cover (2062) Cloud fraction (unitless)
Cloud emissivity (2128) Cloud top spectral emissivities (unitless)
Cloud top height (1423) Cloud top pressure in mb
Cloud top temperature (2463) Atmospheric temperature at the cloud top in
K
AIR05 | Humidity product
Humidity profile (1828) Water vapor profile (in gm-cm unit, in 15
Tota Precipitable water (1869) | layers)
Total precipitable water in gm-cm? (thisis
the integral of water vapor profile and does
not include cloud liquid water or ice.)
AIRO7 | Temperature Product
Temperature profile (1588) Layer-mean temperature profilein K in 30
Sea Surface Temperature (2523) | pressure layers
Land surface temperature (2481) | Sea surface skin temperature in K
Land surface emissivity (2113) | Land surface skin temperaturein K
spectral IR emissivities (linearly interpolated
between tie points)
Day/Night Land surface Day/night (1:30 AM/PM) land surface skin
temperature difference (2539) temperature differencein K
AIR08 | Ozone product
Ozone concentration profile ozone column density profilein 3 layersin
(3690) Dobson units.
Total ozone burden (1332) the integral of ozone profile in Dobson units.
AIR09 | Cloud cleared radiances
Cloud cleared radiances(3683) AIRS spectral radiances that would have
been observed if there were no clouds. This
product may be replaced by software to
compute the product because of data
volume.
TABLE 6.1.1 RETRIEVED PARAMETERS
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6.2 Data Storage estimates.

Thetable 6.2.1 has preliminary storage estimate for the AIRS level 2 dataprocessing. The
levels 0, 1A and 1B storage estimates were included for comparison.

Data K Byte/Sec GByte/Day
AIRS/VISLeve 0 * 170.00 14.70
AMSU-A Level 0* 0.25 0.022
MHSLevel 0 * 1.41 0.122
AIRS Level 1A * 200.00 17.29
VISLevel 1A * 27.20 2.35
AMSU-A Levd 1A * 4.85 0.42
MHS Level 1A * 19.00 1.64
AIRS Level 1B * 318.30 27.50
VISLevel 1B * 40.86 3.53
AMSU-A Level 1B * 1.86 0.16
MHS Level 1B * 13.66 1.18
AIRS Level 2 19.10 1.65
AIRS Level 3# 0.56 0.048

Total 817.05 70.612

TABLE 6.2.1 DATA STORAGE ESTIMATE

*radiances (16 bits) and 5/10% (level 0/1) extrafor engineering and other data
# 1x1 degree, twice daily, 100 fields

6.3 Data Processing requirements.

Thetable 6.3.1 shows preliminary estimate of floating point operations for the level 2 data
processing software. The data processing requirement for the levels 1, 3, 4 isincluded here
for comparison and for compl eteness.

FLOPS /O rate

Processing L evel M Flop/Sec K Byte/Sec
AIRSLevel 1* 74.03 520.29
AMSU-A Level 1* 0.05 1.20
MHSLevel 1* 0.16 1.54
Tota Level 1 74.24 523.02
AIRS+ Level 2 1456.79 196.33
AIRS+ Level 3 100.00 24.41

Total 1705.27 1266.79

TABLE 6.3.1 DATA PROCESSING REQUIREMENT
* Assuming that Level 1 processing needs 1000 floating point operation per channel.
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6.4 Required input data.

The AIRSJAMSU-A/MHS level 1b data sets are the main input to the level 2 data
processing software.  There are various tables and coefficients data sets for many parts of
the software. The following two table are the lists of auxiliary input data sets used for the
level 2 dataprocessing. Some of the data sets will be used for the level 2 data processing
and others will be used in the off-line validation software.

Input File Name Short Description

AIRS TC AIRS Tuning Coefficients

AIRS RTC AIRS Rapid Transmittance Algorithm Coefficients

AIRS URF AIRS Upwelling Radiance Features

ANC _EDC DEM 10 x 10 arc min Digital Elevation Map, employed as
backup for determination of surface pressure

ANC DCW Land/Sea Land/Sea Boundary data from ONC digitized maps

ANC_NAVY_ DATABASE Navy 10 x 10 arc min database of surface elevation,
surface type and percent water

TOMS _GSFC_CLIM TOMS ozone climatology based on monthly profiles
(used operationally)

TABLE6.4.1 STATICINPUT DATA SETS(LEVEL 2 PROCESSING)
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Input File Name

Short Description

MOD34_L3 30DY

Gridded vegetation index for estimation of land
surface emissivity, 1x1 degree, monthly

MOD12 L3 96DY

Gridded land cover type for estimation of land surface
emissivity, 1x1 degree, quarterly

ANC_NOAA/NCEP_SNOW/ICE

Gridded snow and seaice extent from AVHRR for
first guess surface emissivity over land and ocean,
1x1 degree, weekly

ANC_NOAA/NCEP_SST

Gridded NCEP Reynolds blended sea surface
temperature climatology, 1x1 degree, weekly

ANC_NCEP_MRF

Gridded analysis data of Medium Range Forecast
product, 1x1 degree every 6 hours (used in validation)

ANC_NCEP _PROF

Gridded NCEP global model temperature, moisture
and ozone profiles 1x1 degree, every 6 hours (used
operationally)

ANC_NOAA/NESDIS _0O3BUV2

Gridded Ozone profiles from SBUV-2/NOAA, 1x1
degree, daily

ANC_NOAA/NCEP_SURF

Gridded NCEP Globa Model Surface Parameters
(winds, relative humidity, pressure, air-sea
temperature differences, etc.), 1x1 degree, every 6
hours

ANC_NOAA/NESDIS NDVI

Gridded Level 3 NDVI Product created from
processing daily AVHRR GAC data, 1x1 degree,
weekly

ANC_NOAA/NCEP_SFC_OBS

Surface Observations collected daily from NOAA'’s
surface network of observation stations (including
ships & buoys), every 6 hours

ANC_NOAA/NCEP_RDSONDS_OBS

In situ observations collected from radiosondes and
Rawinsondes, every 6 hours

ANC_EDC_LANDCOVER

Surface land cover & vegetation type (to estimate
surface emissivities over land), quarterly

ANC_GSFC_O3TOMS

Gridded Ozone profile from TOMS, 1x1 degree,
daily (used in validation)

TABLE6.4.2 DYNAMIC INPUT DATA SETS(LEVEL 2 PROCESSING)
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7. Quality Control, Diagnostics, and Exception Handling
( Kalnay / McMillin / Susskind / Haskins /Lee)

There are four phases of quality control to be implemented on the AIRS, AMSU,
HSB datafor Level 2 processing:

pre-retrieval quality control

profile rejection during the retrieval phase
Assimilation-based quality control
statistical error-bar assessment.

Pre-retrieval quality control consists of automated limit-checking on input radiances
aswell asthe use of EOFsto characterize bad points. Profile rgection is based on the use
of residuals, or difference between computed and measured radiances, to rgect poorly-
behaved retrievals. Assmilation-based qudity control uses proven NCEP procedures
applied directly to the radiances. Finaly, an EOF technique will be used to statistically
characterize the error for the Level 2 Core Products. All of these quality control indicators
will be provided to the data users.

7.1 Preretrieval Quality Control (Lee)

The input data will be subjected to a series of automatic internal quaity checks
before being passed to the Level 2 retrieval stage. Failure to pass any of these quality
checks will cause the corresponding AMSU footprint to be skipped and generate a
message in the internal quality check log. A non-exhaustive list of interna input data

quality checksfollows:

Failure

PreLevd 2 Retrieval Action

Auxiliary data missing

Log what is missing, notify DAAC, time-out if no corrective action

Auxiliary data dropout

Log dropout. If athreshold for maximum duration of alowed dropout
is exceeded, notify DAAC

AIRS/AMSU/HSB
data missing

Log what is missing, notify DAAC, time-out if no corrective action

AIRS/AMSU/HSB
full data dropout

Log dropout. If athreshold for maximum duration of allowed dropout
is exceeded, notify DAAC

AIRS/AMSU/HSB
partial data dropout

Log dropout. If athreshold for maximum duration of allowed dropout
is exceeded, notify DAAC

AIRS/AMSU/HSB
invalid data

1. Log particulars.

2. Negative Radiance Vaues

All radiances must be non-negative. A negative value would arise from
an instrument problem or calibration failure.

3. Too Large Radiance Vaues

There is an absolute limit beyond which aradiance value is non-
physical. Therewill be athreshold defined for each instrument
(AIRS/AMSU/HSB) and possibly for ranges of channels within AIRS.
Values which are too large indicate an instrument problem or mis-
pointing (i.e., looking at the sun) or calibration failure.

4. Insufficient Range of Radiance Vaues

Selected channel pairs should exhibit radiance values which differ by at
least a minimum threshold (and in the proper sense). Insufficient range
indicates an instrument problem or calibration failure.

TABLE 7.1.1 INTERNAL INPUT DATA QUALITY CHECK FAILURE ACTIONS
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Upon detecting a Leve 2 retrieva failure, the software will gracefully recover and
move on to the next valid AMSU footprint. An abort should be necessary only in the case
where the DAAC has not provided the required valid data sets.

Use of EOFsto Characterize I nput Radiances (Haskins/McMillin)

We have also studied the use of a pre-computed set of Empirical Orthogonal
Functions (EOFs) to use as radiance filters for corrupted radiances. The technique is
similar in spirit to using Fourier analysis time-series techniques for data quality control.
The EOFs provide a more economical framework.

For clear radiances and the microwave radiances, the technique is straightforward.
Given a statigtical ensemble of radiances, the EOFs are caculated off-line based on the
covariance. Then the current radiance profile is projected against the EOFs and any three
sigmaradiance is rejected.

For cloudy radiances, we plan to explore atechnique described in section 4.2 using
a cloud-contaminated ensemble of radiances. Clouds introduce a greater individual
uncertainty in the variance of each tropospheric channel. However, the channel-to-channel
variances are quite similar. For example, the surface sounding channels will be al
approximately affected equally by clouds. It is the channel-to-channel variance we will
exploit through the use of EOFs as outlined above (see Haskins, et al., 1996).

7.2 Rejection criterion (Susskind)

A maor source of error for the Level 2 Core Products is an inaccurate cloud
clearing. In the following discussion we will focus on that aspect. In the case of
indeterminate values of n, spurious solutions can occur which match the infrared
radiances but are incorrect. Under these conditions, there will be a mismatch between the
microwave radiances, unaffected by clouds, and the infrared clear column radiances,
incorrectly affected by clouds. This mismatch can show up in two ways. First, the
temperature solution obtained from an AMSU only retrieval may produce significantly
different results from that obtained with the combined AIRSAMSU temperature profile
retrieval. Second, the RMS differences of the observed minus computed brightness
temperatures for the AMSU channels resulting from the coupled AIRS/AMSU
temperature retrieval may be large. We rgect the retrieval as having a spurious cloud
solution if either

Dl K X /2
kZl(T(pk)_TA (pk))é >1.5° (7.2.1)

for pressures p, = 500 mb, where T(p) is the find AIRSJAMSU temperature profile and

TA(p) isan AMSU only temperature profile determined after the first pass through the
retrieval scheme, or

L i d/z
éiwzz (@A,e _@A,z)D
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where (G)A,f —C:)Alg) represents the differences of the observed AMSU brightness

temperatures and those computed from the find solution T(p), for the L AMSU-A
tropospheric sounding channels 3-11, and W, are inversely proportional to the channel
noise. Thistest did not reject any of the well conditioned cases we tried.

Another rgection criteria was discussed in section 4.3. If a low contrast overcast
condition exists, then Eq. 4.3.11 will be used to reject those cases.

A similar condition existsif a cloud formation is constant within al fields of view.
In a multiple cloud formation case, this can be detected by calculating a clear radiance

estimate, R, . x with the reconstructed clear column radiance, IA?i, for the cloud clearing
channels. The channels are weighted with the inverse of the diagona of the noise
covariance matrix, W, = 1/N.., where N.. is given by Eq. 4.3.10. The profile should be

rejected if the root-mean-square difference exceeds a threshol d:

7 Y > 0.5°K (7.2.3)

(B, f
12" Barl, A

7.3 NCEP Quality Control (Kalnay)

The NCEP operational data assimilation and forecasting system will provide two
unique contributions to AIRS: an advanced Quality Control (QC) performed within the
operational data assmilation in near real time, and the monitoring of the results of this QC,
which provides an early warning of any problem detected.

There are basically two major approaches to the sounder QC: a) comparing
retrievals to collocated data (such as rawinsondes); b) direct QC of the radiances from the
AIRS ‘superchannels' . The concept of ‘superchannels is still being defined by the AIRS
Science Team but a superchannel will be either be a linear combination of selected AIRS
channel or a selected subset of the entire channel set. The basic aim of the superchanne set
isto fit into the computational envelope at NCEP.

The two QC approaches are complementary, but the second approach is much
more powerful for several reasons discussed later, and in practice it is best carried out
within the operational assimilation of the radiances. The 3-D variationa direct assmilation
of TOVS radiances, implemented a8 NCEP on October 1995, has provided both the
infrastructure for this approach, and a clear proof of its power.

The results of the monitoring will be posted in real time on the NCEP file server,
and will be availablein severa formats, including a rotating monthly/seasona archive and
graphic display of thefit to the first guess of each of the AIRS channels or superchannels
that will be used in the data assimilation, and the rate of datarejection by the QC for each of
the channels. Thiswill provide the AIRS team the ability to easily assess the status of the
instrument, an early warning of detected problems, and the ability to test the impact of
corrective measures, or improvements in the algorithms or selections of the superchannels.
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The 3-D variational assimilation of radiances and the present
TOVS radiances QC

The 3-D variationa (3DVAR) direct assmilation of cloud-cleared radiances
implemented at NCEP in October 1995 (Derber and Wu, 1996) has resulted in the largest
increase in forecast skill ever obtained in either the Northern Hemisphere (NH) or the
Southern Hemisphere (SH) due to any other single change in more than a decade (Fig.
7.3.1). In fact, it has provided the first large, significant positive impact in the NH, and
greatly improved the impact that TOV'S data dready had in the SH. The reasons for this
large impact are better understood when looking at the cost function minimized every 6 hr
in the operationa data assmilation:

3= []{(0 = xee) B = X))+ ((FOW) = Yn) €O+ MY (F, = Yooo)) + T iyl
(7.31)

where x, represents the full 3-dimensional analysis in the model variables (about one
million degrees of freedom), X is the first guess (a 6-hour forecast), F(x,) is the
transformation of the analysis variables into observed variables via the forward model,
yobs are the observations, and the last term is a constraint on the time changes of the
divergence equation, which maintains a balanced state and eliminates the need in the NCEP
system to perform nonlinear normal mode initialization. The matrices B, O and M are the
error covariance matrices for the model error, the observationa error, and the forward
model F respectively.
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5-Day Forecasts Jun-Aug NH
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FIG 7.3.1: EVOLUTION OF THE 5-DAY FORECAST SKILL (ANOMALY CORRELATION) FOR THE NOAA/NCEP
OPERATIONAL FORECASTSFOR THE JUNE-AUGUST SEASON FOR THE LAST DECADE USING TOV SRETRIEVALS
(MRF). FORTHE YEAR 1995 AN EXPERIMENTAL SYSTEM IN WHICH THE RADIANCES WERE DIRECTLY
ASSIMILATED ISALSO SHOWN (RAD) Tor: NH; BOTTOM:SH.

Thefirst term represents the fit of the analysis to the first guess, the second the fit
of the analysis to the observations, and the third is measures its lack of balance. The
minimization of this objective cost function ensures that the analysisisthe 3-D model state
which is closest to the first guess and to the observations (and aso maintains a proper
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balance). The transformation of the analysis variables to the observed variables is crucid:
with this approach any type of observation can, in principle, be used in its originad form
(such as satellite radiances), rather than produce model variables from observed radiances
through retrievals.

There are severa advantagesto the direct use of cloud-cleared radiances:

1. QC of the radiance datais much more efficient than the QC of theretrievals,

2. biasesin the measurements can be detected and corrected, for the same reason;

3. unliketheretrieval problem, which isill-posed because the radiances do not provide
enough information for a vertica sounding, the assimilation of radiances is well
posed;

4. dl the 3-dimensiona data (satellite and non-satellite) are used simultaneoudly,
which produces a more accurate analysis, and can be considered, in turn, as the best
possible retrieval. The assimilation of radiances uses only the information
contained in the data and, unlike the retrieval process, it is not contaminated by
inconsi stent guesses and statistics.

The reason that QC of the radiances is more effective is that the forward model
provides avery accurate first guess for each measurement, and the errors characteristics for
the radiances are cleaner, dlowing the detection of small errors. By contrast, in the
retrievals the QC is difficult because the information and the errors originating from the
different channels and the algorithms are all scrambled together.

In the present operational assimilation of TOV'S radiances (Derber and Wu, 1996)
there is a careful determination of the bias between the observed and simulated data
(discussed in more detail in section 8.4 on the AIRS model validation). The operational
QC of TOVS radiances is made by two tests. a gross test (checking whether the
observations are within a reasonable range), and (most important) a check against the
predicted values based on the first guess and nearby observations. The decision whether to
accept or reglect ameasurement is based on the ratio between the observationa residual (the
difference between the predicted and observed radiance), and the expected error standard
deviation for that channel. This quantity is modified by the position across the track of the
scan, whether it is over land or sea, the elevation, the difference between the atmospheric
model and the real orographic elevation, and the latitude (the criterion is made tighter in the
tropics). Some of these modifications are to eliminate poor observations, and some to
eliminate stuations where the forward model may result in deficient simulated
observations. The datarejections are performed independently for each channel.

These checks provide a rich and precise information source about the error
characteristics of the TOVS channels: the difference of the observed and simulated
radiance, its bias, the dependence on the orbital parameters, geography, etc. These daa
provide the most powerful basis for real time monitoring of the quality of the data, by for
example monitoring the rate of data regection for each channd, and aso for the
improvement of the algorithms

Planned AIRS QC and monitoring

Obviously the present TOV S operational data assimilation system discussed above
provides only an example of how the QC of the AIRS data and the monitoring will be
carried out. A lot will depend on the choice of AIRS data that will be actualy used in the
data assmilation (see the AIRS model validation section 8.4). Here we assume that an
appropriate data compression will be chosen by the science team, and implemented by the
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AIRS operationa team. We denote the result of the data compression (if any is deemed
necessary) as superchannels.

Assuming that the superchannels will provide the most significant information
from AIRS, we plan to follow a similar path as TOV'S, but with parameters appropriately
adapted to AIRS:

a) Theforward model (which the science team hasto develop) will provide (from the
first guess and nearby observations) a very accurate estimate of what the
superchannel s radiances should be.

b) These will be compared with the actua superchannels radiances and the ratio
between the difference (observationa residual) to the expected (instrumental,
representativeness, etc.) standard deviation of the error for each superchannel will
be used to guide the accept/reject decision.

c) Asfor TOVSthergection criteriawill have to be tuned to the characteristics of the
system. For example, in TOV S the interchannel error covariances for the radiances
are assumed to be zero, and this may not be the case for superchannels.

d) As is the case for TOVS, the bias between the smulated and observed
superchannel observations will be measured and corrected.

€) The results of these checks (number of out-of-range observations, bias, rms
difference between observational residuals, percentage of observations rejected, etc.,
will be saved for each superchannel and archived.

f) These archives will be posted on NCEP file servers and made available by ftp and
internet. The results will be also graphicaly displayed on a monthly and/or
seasona rotating archive on the internet. NCEP has considerable experience
posting such data in near rea time (see for example meteograms displayed on the
NCEP EMC home page, nic.fb4.noaa.gov:8000/), which are widely used by the
academic community and the public.

The graphic displayswill allow the AIRS operators and the science team to monitor
and in redl time and get an early warning of instrumental problems, and the immediate
impact of remedial actions or of improvements in the algorithms, such as the selection of
superchannels or the forward algorithms.

7.4. Statistical Error-Bar Assessment (Haskins)

The error budget for the geophysical retrieval of any space-based measurement
consists of the following sources of uncertainty (see Rodgers, 1990):

1. Instrument noise, which is relatively small for the AIRS instrument but can be
more significant for the microwave components.

2. ‘Null Space’ or unresolvable fine scae solution structure which is generdly
manifested through the initial guessto the retrieval process

3. The mathematical retrieva error itself which has two major parts for the infrared
retrievals; errors due to cloud clearing and parameter retrieval errors. Both of these
error sources will be closely examined and has been described in Section 4.3.3.

4. Errors in the radiative transfer caculation that generadly result from incomplete
knowledge of underlying physics (line shape, line strength, etc.). These types of
errors are systematic in nature and for the AIRS retrieval system the errors are
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greatly reduced by ‘tuning’ against Radiosondes or possibly forecast models (see

section 5).

The solution error is characterized by the difference between measurement and the
retrieved geophysical parameters mapped back into brightness temperature through the

Radiative Transfer Equation (RTE).

This difference is commonly referred to as the

residual.
height height
A A
/ A
/ o \ i
i /  mapping \
v \
/ 7
/ p 1
* <
~ R
- 1 x5 - > 5
Residual Error

AT, = f(Al) = f%%ATdr@

FIGURE 7.4.1: RESIDUAL TO ERROR MAPPING
Considering the sources of error, if the residua is within the instrument noise
limits, then, ignoring the mathematical questions of uniqueness, the solution is as good as
can be expected. If other sources of error dominate—which in our case is either null space
error or retrieval error—then no technique can minimize the residuals at the measurement
noise threshold and the residuals will, in a statistical sense, exceed the threshold. It is this
criterion which will be utilized to characterize the error in the AIRS data sets.

Use of EOFsto Characterize the Relation of Error to Residual

Once brightness temperature residuals and measurement errors are placed on a
common space-time grid, one could conceivably generate a regression scheme to predict
measurement error from residual. Unfortunately, such a regression would involve many
thousands of pairs of numbers from many different atmospheric regimes. It would be far
better to apply separate regression relations under different conditions. It is aso important
to know those situations where radiance residual is a poor predictor of measurement error.
We can begin to address these problems by reducing the datasets to Empirical Orthogonal
Eigenfunctions (EOFs). This technique is a useful method for separating variability in a
complicated dataset because the EOFs express statistically dependent space-time variability
asaset of mathematically orthogonal structures. They also compress a high-dimensional
dataset into alimited number of dominant modes. The EOFs will be the starting point for
subsequent analysis.

The basic methodology for caculating EOFs and their use in examining the
relationship between residual brightness temperature and measurement error will be
described. EOFs are ssimply the eigenvalues of error covariance matrices. One can imagine
a time-varying set of maps of a quantity; the time covariance of this quantity forms a
square matrix of dimension equa to the total number of spatia gridpoints in the maps.
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The EOFs are the eigenmodes of this covariance matrix, and, like the origina quantity they
form spatial maps. The associated eigenvalues give the fraction of variance embodied in
each EOF. The number of EOFsis equal to the number of degrees of freedom in the map,
but it isgenerally truein practice that only the first few modes carry most of the variance.
(Preisendorfer [1988] gives significance criteria) The important characteristics of EOFs
ae 1) they are mathematicaly orthogonal, 2) they completely span the space of
measurements used to generate them, and 3) they generally compress information into a
few data structures.

There is aso a direct relationship between the EOFs and the original quantity. In
the case of residual temperatures, a map can be reconstructed at time t from the residual
temperature EOFs ¢(x) via

AT(x,t) = z a)eo. (x) (74.1)

wherei represents eigenmode number and X is a general spatial coordinate; here a (t) is
the projection of the map onto the EOF at timet, i. e. the inner product between the map a
timet and the i-th EOF ¢.. In practice the sum in (7.4.1) would be calculated over only

the first few, significant modes. It isimportant to note that thereis only one value of a(t)
for each time t and mode number i and it is the same for each gridpoint in the map.

In this context we are also interested in the EOFs of measurement error, . Maps of this
quantity can be expanded in terms of itsown EOFs y;(X):

a(x.t) =3 b(t)x () (7.4.2)

Again, the x; are orthogonal and completely span the space of observation o, and
the b’s are the projection of maps onto the EOFs.

Notethat the two sets of coefficients ¢ and x are not necessarily orthogonal to
one another; the amount to which they are linearly dependent is a measure of their statistical
corrdlation. The main purpose of this approach is to examine how well the variations in
measurement error g(x,t) are characterized by radiance residuals AT(x,t), or, the degree
of statistical correlation between the two quantities. One measureis

6(t) =y bOX.(x) (7.43)

where BI = chian(t). If AT isaperfect predictor of o then ¢ should be exactly equal to

o and b =h; if AT has no relationship to o, then ¢ and o will be uncorrelated. The
real relationship between AT and o is somewhere between these two extremes.
Importantly, estimation of statistica dependence is done as a set of objective agebraic
manipulations | Preisendorfer (1988); Barnett et al. (1981; 1987)].

Metric Verification

The basic tool we will use to verify the EOF quality of the relationship defined in
(7.4.3) isthe cross validation technique [chapters 8 and 9 of Preisendorfer (1988), and
illustrated in Barnett et al. (1981; 1987)]. The method can be described as follows.
Remove an independent sample and construct the model in eg. 7.4.3 on the remaining N-1
samples. Use this model and estimate ¢ according to the removed (independent) data
sample. Repeat the procedure, holding out successive independent data samples which
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result in new models according to eg. 7.4.3 and obtaining, a each step, an independent
estimate of ¢. The end result is N independent estimates of ¢. These can be ‘skill
scored’ with respect to the observed o and the significance of the solution in 7.4.3 rlative
to, say, asimulated white or red noise process.

7.5. Software Exception Handling (L ee)
In the following discussion, all exceptionswill be coded and passed along with the

level 2 data stream.

Failure

Level 2 Retrieval Action

AIRS/AMSU/HSB
full data dropout

Reinitialize and restart retrieval upon encountering renewed data stream.
Extent of re-initialization depends upon the duration of the data dropoui.

AIRS/AMSU/HSB
partial data dropout

Branch to partia retrieval depending on what is available to software

AMSU only  MW-only Temperature Retrievals

HSB only pass

AIRS only pass

AMSU/AIRS Temperature/Moisture Retrieva
AMSU/HSB MW:-only Temperature/Moisture Retrievals
HSB/AIRS pass

AIRS/AMSU/HSB
invalid data

Depending upon severity of invalid data:
Ignore offending AIRS footprint datain retrieval and continue
Ignore offending HSB footprint datain retrieval and continue
Skip entire retrieval for corresponding AMSU footprint

MW:-only Retrieval Set relevant flag(s)

Failure Set failed retrieval profile(s) to climatology and proceed
First Cloud-Clearing Set relevant flag(s)

Failure Branch to Second Cloud Clearing stage

First Retrieva Set relevant flag(s)

Failure Set failed retrieval profile(s) to MW-only and proceed
Second Cloud-Clearing | Set relevant flag(s)

Failure Output remains that from First Retrieval

Second Retrieval Set relevant flag

Failure Output remains that from First Retrieval

TABLE 7.5.1 EXCEPTION HANDLING ON LEVEL 2 RETRIEVAL FAILURE
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